Yongfei Hu, Xinyu Li, Ying Yi, Yan Huang, Guangyu Wang, Dong Wang
{"title":"Deep learning-driven survival prediction in pan-cancer studies by integrating multimodal histology-genomic data.","authors":"Yongfei Hu, Xinyu Li, Ying Yi, Yan Huang, Guangyu Wang, Dong Wang","doi":"10.1093/bib/bbaf121","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate cancer prognosis is essential for personalized clinical management, guiding treatment strategies and predicting patient survival. Conventional methods, which depend on the subjective evaluation of histopathological features, exhibit significant inter-observer variability and limited predictive power. To overcome these limitations, we developed cross-attention transformer-based multimodal fusion network (CATfusion), a deep learning framework that integrates multimodal histology-genomic data for comprehensive cancer survival prediction. By employing self-supervised learning strategy with TabAE for feature extraction and utilizing cross-attention mechanisms to fuse diverse data types, including mRNA-seq, miRNA-seq, copy number variation, DNA methylation variation, mutation data, and histopathological images. By successfully integrating this multi-tiered patient information, CATfusion has become an advanced survival prediction model to utilize the most diverse data types across various cancer types. CATfusion's architecture, which includes a bidirectional multimodal attention mechanism and self-attention block, is adept at synchronizing the learning and integration of representations from various modalities. CATfusion achieves superior predictive performance over traditional and unimodal models, as demonstrated by enhanced C-index and survival area under the curve scores. The model's high accuracy in stratifying patients into distinct risk groups is a boon for personalized medicine, enabling tailored treatment plans. Moreover, CATfusion's interpretability, enabled by attention-based visualization, offers insights into the biological underpinnings of cancer prognosis, underscoring its potential as a transformative tool in oncology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate cancer prognosis is essential for personalized clinical management, guiding treatment strategies and predicting patient survival. Conventional methods, which depend on the subjective evaluation of histopathological features, exhibit significant inter-observer variability and limited predictive power. To overcome these limitations, we developed cross-attention transformer-based multimodal fusion network (CATfusion), a deep learning framework that integrates multimodal histology-genomic data for comprehensive cancer survival prediction. By employing self-supervised learning strategy with TabAE for feature extraction and utilizing cross-attention mechanisms to fuse diverse data types, including mRNA-seq, miRNA-seq, copy number variation, DNA methylation variation, mutation data, and histopathological images. By successfully integrating this multi-tiered patient information, CATfusion has become an advanced survival prediction model to utilize the most diverse data types across various cancer types. CATfusion's architecture, which includes a bidirectional multimodal attention mechanism and self-attention block, is adept at synchronizing the learning and integration of representations from various modalities. CATfusion achieves superior predictive performance over traditional and unimodal models, as demonstrated by enhanced C-index and survival area under the curve scores. The model's high accuracy in stratifying patients into distinct risk groups is a boon for personalized medicine, enabling tailored treatment plans. Moreover, CATfusion's interpretability, enabled by attention-based visualization, offers insights into the biological underpinnings of cancer prognosis, underscoring its potential as a transformative tool in oncology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.