Annette Spooner, Mohammad Karimi Moridani, Barbra Toplis, Jason Behary, Azadeh Safarchi, Salim Maher, Fatemeh Vafaee, Amany Zekry, Arcot Sowmya
{"title":"Benchmarking ensemble machine learning algorithms for multi-class, multi-omics data integration in clinical outcome prediction.","authors":"Annette Spooner, Mohammad Karimi Moridani, Barbra Toplis, Jason Behary, Azadeh Safarchi, Salim Maher, Fatemeh Vafaee, Amany Zekry, Arcot Sowmya","doi":"10.1093/bib/bbaf116","DOIUrl":null,"url":null,"abstract":"<p><p>The complementary information found in different modalities of patient data can aid in more accurate modelling of a patient's disease state and a better understanding of the underlying biological processes of a disease. However, the analysis of multi-modal, multi-omics data presents many challenges. In this work, we compare the performance of a variety of ensemble machine learning (ML) algorithms that are capable of late integration of multi-class data from different modalities. The ensemble methods and their variations tested were (i) a voting ensemble, with hard and soft vote, (ii) a meta learner, and (iii) a multi-modal AdaBoost model using hard vote, soft vote, and meta learner to integrate the modalities on each boosting round, the PB-MVBoost model and a novel application of a mixture of expert's model. These were compared to simple concatenation. We examine these methods using data from an in-house study on hepatocellular carcinoma, plus validation datasets on studies from breast cancer and irritable bowel disease. We develop models that achieve an area under the receiver operating curve of up to 0.85 and find that two boosted methods, PB-MVBoost and AdaBoost with soft vote were the best performing models. We also examine the stability of features selected and the size of the clinical signature. Our work shows that integrating complementary omics and data modalities with effective ensemble ML models enhances accuracy in multi-class clinical outcome predictions and produces more stable predictive features than individual modalities or simple concatenation. We provide recommendations for the integration of multi-modal multi-class data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf116","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The complementary information found in different modalities of patient data can aid in more accurate modelling of a patient's disease state and a better understanding of the underlying biological processes of a disease. However, the analysis of multi-modal, multi-omics data presents many challenges. In this work, we compare the performance of a variety of ensemble machine learning (ML) algorithms that are capable of late integration of multi-class data from different modalities. The ensemble methods and their variations tested were (i) a voting ensemble, with hard and soft vote, (ii) a meta learner, and (iii) a multi-modal AdaBoost model using hard vote, soft vote, and meta learner to integrate the modalities on each boosting round, the PB-MVBoost model and a novel application of a mixture of expert's model. These were compared to simple concatenation. We examine these methods using data from an in-house study on hepatocellular carcinoma, plus validation datasets on studies from breast cancer and irritable bowel disease. We develop models that achieve an area under the receiver operating curve of up to 0.85 and find that two boosted methods, PB-MVBoost and AdaBoost with soft vote were the best performing models. We also examine the stability of features selected and the size of the clinical signature. Our work shows that integrating complementary omics and data modalities with effective ensemble ML models enhances accuracy in multi-class clinical outcome predictions and produces more stable predictive features than individual modalities or simple concatenation. We provide recommendations for the integration of multi-modal multi-class data.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.