AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhen Gao, Yansen Su, Jin Tang, Huaiwan Jin, Yun Ding, Rui-Fen Cao, Pi-Jing Wei, Chun-Hou Zheng
{"title":"AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data.","authors":"Zhen Gao, Yansen Su, Jin Tang, Huaiwan Jin, Yun Ding, Rui-Fen Cao, Pi-Jing Wei, Chun-Hou Zheng","doi":"10.1093/bib/bbaf118","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf118","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信