Zhen Gao, Yansen Su, Jin Tang, Huaiwan Jin, Yun Ding, Rui-Fen Cao, Pi-Jing Wei, Chun-Hou Zheng
{"title":"AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data.","authors":"Zhen Gao, Yansen Su, Jin Tang, Huaiwan Jin, Yun Ding, Rui-Fen Cao, Pi-Jing Wei, Chun-Hou Zheng","doi":"10.1093/bib/bbaf118","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf118","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.