Mechanistic insights into the neuroprotective effects of low-intensity transcranial ultrasound stimulation in post-cardiac arrest brain injury: Modulation of the Piezo1-Dkk3/PI3K-Akt pathway
Shuang Xu , Lulu Gu , Banghe Bao , Qian Liu , Qiaofeng Jin , Yannan Ma , Siyi Zhou , Beibei Li , Li Xu , Guangqi Guo , Jinpiao Zhu , Kuan-Pin Su , Peng Sun
{"title":"Mechanistic insights into the neuroprotective effects of low-intensity transcranial ultrasound stimulation in post-cardiac arrest brain injury: Modulation of the Piezo1-Dkk3/PI3K-Akt pathway","authors":"Shuang Xu , Lulu Gu , Banghe Bao , Qian Liu , Qiaofeng Jin , Yannan Ma , Siyi Zhou , Beibei Li , Li Xu , Guangqi Guo , Jinpiao Zhu , Kuan-Pin Su , Peng Sun","doi":"10.1016/j.bbi.2025.03.027","DOIUrl":null,"url":null,"abstract":"<div><div>Post-cardiac arrest brain injury (PCABI) remains a significant challenge, marked by high mortality and disability rates due to persistent neuroinflammation. This study explored the neuroprotective potential of low-intensity transcranial ultrasound stimulation (LITUS) in mitigating brain damage after cardiopulmonary resuscitation (CPR) using a murine model and in vitro assays. LITUS treatment improved 24-h survival rates and neurological recovery in cardiac arrest (CA) mice, as evidenced by behavioral assessments and reduced neurological deficit scores. Proteomic analyses revealed modulation of Piezo1-Dkk3/PI3K-Akt signaling pathway, characterized by decreased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). Mechanistic studies demonstrated that LITUS enhanced Piezo1 and Dkk3 activation, promoting calcium influx and anti-inflammatory responses. The Piezo1 antagonist GsMTx4 abrogated these effects, underscoring Piezo1’s specific role. Additionally, in vitro experiments using oxygen/glucose deprivation and reoxygenation (OGD/R)-treated BV2 microglial cells confirmed that LITUS reduced inflammatory responses and enhanced cellular recovery via the Piezo1-Dkk3 axis. These findings highlight LITUS as a promising non-invasive therapeutic strategy to ameliorate PCABI by modulating neuroinflammation through the Piezo1-Dkk3/PI3K-Akt pathway. This work provides a basis for translational research and potential clinical applications in improving outcomes for CPR survivors.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"127 ","pages":"Pages 341-357"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001126","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-cardiac arrest brain injury (PCABI) remains a significant challenge, marked by high mortality and disability rates due to persistent neuroinflammation. This study explored the neuroprotective potential of low-intensity transcranial ultrasound stimulation (LITUS) in mitigating brain damage after cardiopulmonary resuscitation (CPR) using a murine model and in vitro assays. LITUS treatment improved 24-h survival rates and neurological recovery in cardiac arrest (CA) mice, as evidenced by behavioral assessments and reduced neurological deficit scores. Proteomic analyses revealed modulation of Piezo1-Dkk3/PI3K-Akt signaling pathway, characterized by decreased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). Mechanistic studies demonstrated that LITUS enhanced Piezo1 and Dkk3 activation, promoting calcium influx and anti-inflammatory responses. The Piezo1 antagonist GsMTx4 abrogated these effects, underscoring Piezo1’s specific role. Additionally, in vitro experiments using oxygen/glucose deprivation and reoxygenation (OGD/R)-treated BV2 microglial cells confirmed that LITUS reduced inflammatory responses and enhanced cellular recovery via the Piezo1-Dkk3 axis. These findings highlight LITUS as a promising non-invasive therapeutic strategy to ameliorate PCABI by modulating neuroinflammation through the Piezo1-Dkk3/PI3K-Akt pathway. This work provides a basis for translational research and potential clinical applications in improving outcomes for CPR survivors.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.