Allo-lithocholic acid, a microbiome derived secondary bile acid, attenuates liver fibrosis

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Silvia Marchianò , Michele Biagioli , Cristina Di Giorgio , Carmen Massa , Rachele Bellini , Martina Bordoni , Ginevra Urbani , Ginevra Lachi , Valentina Sepe , Elva Morretta , Eleonora Distrutti , Angela Zampella , Maria Chiara Monti , Stefano Fiorucci
{"title":"Allo-lithocholic acid, a microbiome derived secondary bile acid, attenuates liver fibrosis","authors":"Silvia Marchianò ,&nbsp;Michele Biagioli ,&nbsp;Cristina Di Giorgio ,&nbsp;Carmen Massa ,&nbsp;Rachele Bellini ,&nbsp;Martina Bordoni ,&nbsp;Ginevra Urbani ,&nbsp;Ginevra Lachi ,&nbsp;Valentina Sepe ,&nbsp;Elva Morretta ,&nbsp;Eleonora Distrutti ,&nbsp;Angela Zampella ,&nbsp;Maria Chiara Monti ,&nbsp;Stefano Fiorucci","doi":"10.1016/j.bcp.2025.116883","DOIUrl":null,"url":null,"abstract":"<div><div>Secondary bile acids, lithocholic acid and deoxycholic acid (LCA and DCA), are dehydroxylated derivatives of primary bile acids. However, in addition to LCA and DCA the intestinal microbiota produced a variety of poorly characterized metabolites. Allo-LCA, a LCA metabolite, acts as a dual GPBAR1 agonist and RORγt inverse agonist and modulates intestinal immunity, although is not yet known whether allo-LCA exerts regulatory functions outside the intestine. In the present study we have therefore investigated whether administration of allo-LCA, 10 mg/kg/day, to mice administered a high fat/high fructose diet (HFD-F) and carbon tetrachloride (Ccl4), a model for metabolic dysfunction-associated steatohepatitis (MASH), protects from development of liver damage. In vitro allo-LCA functions as GPBAR1 agonist and RORγt inverse agonist and prevents macrophages M1 polarization and Th17 polarization of CD4 cells. In vivo studies, while exposure to a HFD-F/Ccl4 promoted insulin resistance and development of a pro-atherogenic lipid profile and liver steatosis and fibrosis, allo-LCA reversed this pattern by improving insulin sensitivity and liver lipid accumulation. The liver transcriptomic profile demonstrated that allo-LCA reversed the dysregulation of multiple pathways associated with immunological, inflammatory and metabolic signaling. Allo-LCA also restored bile acid homeostasis, reversing HFD/Ccl4-induced shifts in bile acid pool composition and restored adipose tissue histopathology and function by reducing the expression of leptin and resistin, two pro-inflammatory adipokines, and restored a healthier composition of the intestinal microbiota. In conclusion, present results expand on the characterization of entero-hepatic signaling and suggest that allo-LCA, a microbial metabolite, might have therapeutic potential in liver diseases.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"236 ","pages":"Article 116883"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225001455","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary bile acids, lithocholic acid and deoxycholic acid (LCA and DCA), are dehydroxylated derivatives of primary bile acids. However, in addition to LCA and DCA the intestinal microbiota produced a variety of poorly characterized metabolites. Allo-LCA, a LCA metabolite, acts as a dual GPBAR1 agonist and RORγt inverse agonist and modulates intestinal immunity, although is not yet known whether allo-LCA exerts regulatory functions outside the intestine. In the present study we have therefore investigated whether administration of allo-LCA, 10 mg/kg/day, to mice administered a high fat/high fructose diet (HFD-F) and carbon tetrachloride (Ccl4), a model for metabolic dysfunction-associated steatohepatitis (MASH), protects from development of liver damage. In vitro allo-LCA functions as GPBAR1 agonist and RORγt inverse agonist and prevents macrophages M1 polarization and Th17 polarization of CD4 cells. In vivo studies, while exposure to a HFD-F/Ccl4 promoted insulin resistance and development of a pro-atherogenic lipid profile and liver steatosis and fibrosis, allo-LCA reversed this pattern by improving insulin sensitivity and liver lipid accumulation. The liver transcriptomic profile demonstrated that allo-LCA reversed the dysregulation of multiple pathways associated with immunological, inflammatory and metabolic signaling. Allo-LCA also restored bile acid homeostasis, reversing HFD/Ccl4-induced shifts in bile acid pool composition and restored adipose tissue histopathology and function by reducing the expression of leptin and resistin, two pro-inflammatory adipokines, and restored a healthier composition of the intestinal microbiota. In conclusion, present results expand on the characterization of entero-hepatic signaling and suggest that allo-LCA, a microbial metabolite, might have therapeutic potential in liver diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信