Jian Li , Jiaqi Wu , Qian Chen , Haiyang Yu , Mengyang Liu , Yadong Wang , Yi Zhang , Tao Wang
{"title":"7′-Hydroxyl substituted xanthones from Gentianella acuta revert hepatic steatosis in obese diabetic mice through preserving mitochondrial homeostasis","authors":"Jian Li , Jiaqi Wu , Qian Chen , Haiyang Yu , Mengyang Liu , Yadong Wang , Yi Zhang , Tao Wang","doi":"10.1016/j.bcp.2025.116878","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial dysfunction is a key contributor to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Xanthones, bioactive flavonoids derived from various herbal medicines, are renowned for their anti-inflammatory, antioxidant, and anti-tumor properties. This study aimed to investigate the effects of xanthones isolated from <em>Gentianella acuta</em> on hepatic steatosis and the underlying mechanisms regulating mitochondrial function. We report that a xanthone fraction (400 mg/kg/day) effectively prevented obesity and hepatic steatosis in obese diabetic <em>db/db</em> mice <em>in vivo</em>. <em>In vitro</em>, xanthones inhibited lipid accumulation and mitochondrial dysfunction induced by high glucose (20 mM) and high palmitic acid (200 µM) in HepG2 cells. Mechanistically, norathyriol (NTR), a major <em>in vivo</em> metabolite of <em>Gentianella acuta</em>, inhibited the activity of dynamin-related protein 1 (Drp1), a protein associated with mitochondrial fission, and prevented its translocation from the cytoplasm to the mitochondria by inhibiting the orphan nuclear receptor (Nur77). Additionally, NTR increased the expression of the mitochondrial outer membrane protein FUN14 domain containing 1 (FUNDC1), which stimulated mitophagy to clear damaged or dysfunctional mitochondria under overnutrition conditions. We also discovered that reactive oxygen species (ROS) targeted FUNDC1, leading to mitochondrial damage, but this effect could be reversed by 7′-hydroxyl substituted xanthones. Collectively, 7′-hydroxyl substituted xanthones inhibited mitochondrial fission while promoting mitophagy, ultimately improving mitochondrial and liver function in diabetic hepatic steatosis. The modulation of mitochondrial function by 7′-hydroxyl substituted xanthones presents a novel approach for treating hepatic steatosis, particularly in diabetic conditions.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"236 ","pages":"Article 116878"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225001406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction is a key contributor to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Xanthones, bioactive flavonoids derived from various herbal medicines, are renowned for their anti-inflammatory, antioxidant, and anti-tumor properties. This study aimed to investigate the effects of xanthones isolated from Gentianella acuta on hepatic steatosis and the underlying mechanisms regulating mitochondrial function. We report that a xanthone fraction (400 mg/kg/day) effectively prevented obesity and hepatic steatosis in obese diabetic db/db mice in vivo. In vitro, xanthones inhibited lipid accumulation and mitochondrial dysfunction induced by high glucose (20 mM) and high palmitic acid (200 µM) in HepG2 cells. Mechanistically, norathyriol (NTR), a major in vivo metabolite of Gentianella acuta, inhibited the activity of dynamin-related protein 1 (Drp1), a protein associated with mitochondrial fission, and prevented its translocation from the cytoplasm to the mitochondria by inhibiting the orphan nuclear receptor (Nur77). Additionally, NTR increased the expression of the mitochondrial outer membrane protein FUN14 domain containing 1 (FUNDC1), which stimulated mitophagy to clear damaged or dysfunctional mitochondria under overnutrition conditions. We also discovered that reactive oxygen species (ROS) targeted FUNDC1, leading to mitochondrial damage, but this effect could be reversed by 7′-hydroxyl substituted xanthones. Collectively, 7′-hydroxyl substituted xanthones inhibited mitochondrial fission while promoting mitophagy, ultimately improving mitochondrial and liver function in diabetic hepatic steatosis. The modulation of mitochondrial function by 7′-hydroxyl substituted xanthones presents a novel approach for treating hepatic steatosis, particularly in diabetic conditions.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.