{"title":"Impact of Composition of Lipid-Based Formulations on First-Pass Drug Metabolism after Oral Administration.","authors":"Yusuke Tanaka, Rikuto Fukaishi, Daiki Okamoto, Takanori Kurakazu, Tokio Nakai, Haruya Yagi, Shinji Sakuma","doi":"10.1021/acs.molpharmaceut.4c01299","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to elucidate the drug absorption mechanisms after oral administration of lipid-based formulations (LBFs), emphasizing the impact of their composition on first-pass drug metabolism. Ketoconazole (KTZ), a CYP3A substrate, was loaded into two types of LBFs: a long-chain LBF (type II-LC) and a lipid-free formulation (type IV). Following oral administration of type II-LC, the systemic exposure of KTZ was lower compared to that for the type IV and a control suspension. However, pretreatment with 1-aminobenzotriazole, a nonspecific CYP inhibitor, revealed equivalent in vivo exposure among the formulations tested. The absorption of KTZ from type II-LC in the early period was slower than that from the suspension and type IV. Experiments on in vitro digestion in sequence with in vitro permeation across a dialysis membrane showed that the drug permeation rate for type II-LC was extremely low. This was probably due to the reduction in free drug molecules in the donor compartment via the incorporation of KTZ into mixed micelles comprising digestion products derived from type II-LC and bile components. Furthermore, luminal concentration measurements revealed that gastric emptying was delayed when a type II-LC was administered. The reduced free drug concentration and transient delay in gastric emptying of KTZ resulted in the slower absorption of KTZ for type II-LC. The product of the fraction of drug absorbed and fraction of the drug not metabolized in the gut wall (Fa × Fg) calculated from the systemic and portal plasma concentration-time courses of KTZ was 0.185 for type II-LC and 0.327 for suspension. Since the luminal concentration measurement demonstrated complete absorption of KTZ from the gastrointestinal tract (Fa ≅ 1), the Fa × Fg values can be regarded as Fg. In conclusion, the lower in vivo exposure following oral administration of type II-LC was attributed to reduced Fg, that is, slower drug absorption from the jejunum resulted in low KTZ concentration in enterocytes, leading to enhanced metabolic efficiency. Our findings can be valuable when selecting excipients for designing LBFs with the preferred in vivo performance for highly metabolized drugs.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01299","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to elucidate the drug absorption mechanisms after oral administration of lipid-based formulations (LBFs), emphasizing the impact of their composition on first-pass drug metabolism. Ketoconazole (KTZ), a CYP3A substrate, was loaded into two types of LBFs: a long-chain LBF (type II-LC) and a lipid-free formulation (type IV). Following oral administration of type II-LC, the systemic exposure of KTZ was lower compared to that for the type IV and a control suspension. However, pretreatment with 1-aminobenzotriazole, a nonspecific CYP inhibitor, revealed equivalent in vivo exposure among the formulations tested. The absorption of KTZ from type II-LC in the early period was slower than that from the suspension and type IV. Experiments on in vitro digestion in sequence with in vitro permeation across a dialysis membrane showed that the drug permeation rate for type II-LC was extremely low. This was probably due to the reduction in free drug molecules in the donor compartment via the incorporation of KTZ into mixed micelles comprising digestion products derived from type II-LC and bile components. Furthermore, luminal concentration measurements revealed that gastric emptying was delayed when a type II-LC was administered. The reduced free drug concentration and transient delay in gastric emptying of KTZ resulted in the slower absorption of KTZ for type II-LC. The product of the fraction of drug absorbed and fraction of the drug not metabolized in the gut wall (Fa × Fg) calculated from the systemic and portal plasma concentration-time courses of KTZ was 0.185 for type II-LC and 0.327 for suspension. Since the luminal concentration measurement demonstrated complete absorption of KTZ from the gastrointestinal tract (Fa ≅ 1), the Fa × Fg values can be regarded as Fg. In conclusion, the lower in vivo exposure following oral administration of type II-LC was attributed to reduced Fg, that is, slower drug absorption from the jejunum resulted in low KTZ concentration in enterocytes, leading to enhanced metabolic efficiency. Our findings can be valuable when selecting excipients for designing LBFs with the preferred in vivo performance for highly metabolized drugs.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.