Development of SAFT-Based Coarse-Grained Models of Carbon Dioxide and Nitrogen.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-04-03 Epub Date: 2025-03-21 DOI:10.1021/acs.jpcb.5c00536
Alexandros Chremos, William P Krekelberg, Harold W Hatch, Daniel W Siderius, Nathan A Mahynski, Vincent K Shen
{"title":"Development of SAFT-Based Coarse-Grained Models of Carbon Dioxide and Nitrogen.","authors":"Alexandros Chremos, William P Krekelberg, Harold W Hatch, Daniel W Siderius, Nathan A Mahynski, Vincent K Shen","doi":"10.1021/acs.jpcb.5c00536","DOIUrl":null,"url":null,"abstract":"<p><p>We develop coarse-grained models for carbon dioxide (CO<sub>2</sub>) and nitrogen (N<sub>2</sub>) that capture the vapor-liquid equilibria of both their single components and their binary mixtures over a wide range of temperatures and pressures. To achieve this, we used an equation of state (EoS), namely Statistical Associating Fluid Theory (SAFT), which utilizes a molecular-based algebraic description of the free energy of chain fluids. This significantly accelerates the exploration of the parameter space, enabling the development of coarse-grained models that provide an optimal description of the macroscopic experimental data. SAFT creates models of fluids by chaining together spheres, which represent coarse-grained parts of a molecule. The result is a series of fitted parameters, such as bead size, bond length, and interaction strengths, that seem amenable to molecular simulation. However, only a limited set of models can be directly implemented in a particle-based simulation; this is predominantly due to how SAFT handles overlap between bonded monomers with parameters that do not translate to physical features, such as bond length. To translate such parameters to bond lengths in a coarse-grained force-field, we performed Wang-Landau transition-matrix Monte Carlo (WL-TMMC) simulations in the grand canonical ensemble on homonuclear fused two-segment Mie models and evaluated the phase behavior at different bond lengths. In the spirit of the law of corresponding states, we found that a force field, which matches SAFT predictions, can be derived by rescaling length and energy scales based on ratios of critical point properties of simulations and experiments. The phase behavior of CO<sub>2</sub> and N<sub>2</sub> mixtures was also investigated. Overall, we found excellent agreement over a wide range of temperatures and pressures in pure components and mixtures, similar to TraPPE CO<sub>2</sub> and N<sub>2</sub> models. Our proposed approach is the first step to establishing a more robust bridge between SAFT and molecular simulation modeling.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3443-3453"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00536","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We develop coarse-grained models for carbon dioxide (CO2) and nitrogen (N2) that capture the vapor-liquid equilibria of both their single components and their binary mixtures over a wide range of temperatures and pressures. To achieve this, we used an equation of state (EoS), namely Statistical Associating Fluid Theory (SAFT), which utilizes a molecular-based algebraic description of the free energy of chain fluids. This significantly accelerates the exploration of the parameter space, enabling the development of coarse-grained models that provide an optimal description of the macroscopic experimental data. SAFT creates models of fluids by chaining together spheres, which represent coarse-grained parts of a molecule. The result is a series of fitted parameters, such as bead size, bond length, and interaction strengths, that seem amenable to molecular simulation. However, only a limited set of models can be directly implemented in a particle-based simulation; this is predominantly due to how SAFT handles overlap between bonded monomers with parameters that do not translate to physical features, such as bond length. To translate such parameters to bond lengths in a coarse-grained force-field, we performed Wang-Landau transition-matrix Monte Carlo (WL-TMMC) simulations in the grand canonical ensemble on homonuclear fused two-segment Mie models and evaluated the phase behavior at different bond lengths. In the spirit of the law of corresponding states, we found that a force field, which matches SAFT predictions, can be derived by rescaling length and energy scales based on ratios of critical point properties of simulations and experiments. The phase behavior of CO2 and N2 mixtures was also investigated. Overall, we found excellent agreement over a wide range of temperatures and pressures in pure components and mixtures, similar to TraPPE CO2 and N2 models. Our proposed approach is the first step to establishing a more robust bridge between SAFT and molecular simulation modeling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信