Dejun Yang , Xin Zhang , Zunqi Hu , Qiang Sun , Hongbing Fu , Jun Yao , Binbin Zheng , Xin Zhang , Weijun Wang
{"title":"Organoid-based single cell sequencing revealed the lineage evolution during docetaxel treatment in gastric cancer","authors":"Dejun Yang , Xin Zhang , Zunqi Hu , Qiang Sun , Hongbing Fu , Jun Yao , Binbin Zheng , Xin Zhang , Weijun Wang","doi":"10.1016/j.canlet.2025.217617","DOIUrl":null,"url":null,"abstract":"<div><div>Docetaxel resistance in gastric cancer poses a major therapeutic challenge. In this study, we established docetaxel-sensitive and -resistant gastric cancer organoids and performed single-cell RNA sequencing to identify cellular and molecular alterations. We observed significant shifts in cell populations, with increased secretory, immune-chemotactic, and transitional gastric cancer cells in the resistant group. Key resistance-related genes, including FOS, IFI27, and PTTG1IP, were upregulated in resistant organoids and gastric cancer patients. A pseudo-time trajectory analysis revealed that resistant cells predominantly occupied terminal differentiation stages. Knocking down FOS, IFI27, and PTTG1IP enhanced docetaxel sensitivity in both cell lines and organoids, regulating ROS production, autophagy, and apoptosis. In vivo, silencing these genes reduced tumor growth in response to docetaxel. These findings suggest that targeting FOS, IFI27, and PTTG1IP could overcome resistance and improve treatment outcomes for gastric cancer patients.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"619 ","pages":"Article 217617"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525001818","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Docetaxel resistance in gastric cancer poses a major therapeutic challenge. In this study, we established docetaxel-sensitive and -resistant gastric cancer organoids and performed single-cell RNA sequencing to identify cellular and molecular alterations. We observed significant shifts in cell populations, with increased secretory, immune-chemotactic, and transitional gastric cancer cells in the resistant group. Key resistance-related genes, including FOS, IFI27, and PTTG1IP, were upregulated in resistant organoids and gastric cancer patients. A pseudo-time trajectory analysis revealed that resistant cells predominantly occupied terminal differentiation stages. Knocking down FOS, IFI27, and PTTG1IP enhanced docetaxel sensitivity in both cell lines and organoids, regulating ROS production, autophagy, and apoptosis. In vivo, silencing these genes reduced tumor growth in response to docetaxel. These findings suggest that targeting FOS, IFI27, and PTTG1IP could overcome resistance and improve treatment outcomes for gastric cancer patients.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.