FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lea Bogensperger, Dominik Narnhofer, Alexander Falk, Konrad Schindler, Thomas Pock
{"title":"FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms","authors":"Lea Bogensperger, Dominik Narnhofer, Alexander Falk, Konrad Schindler, Thomas Pock","doi":"10.1007/s11263-025-02373-y","DOIUrl":null,"url":null,"abstract":"<p>Medical image segmentation plays an important role in accurately identifying and isolating regions of interest within medical images. Generative approaches are particularly effective in modeling the statistical properties of segmentation masks that are closely related to the respective structures. In this work we introduce FlowSDF, an image-guided conditional flow matching framework, designed to represent the signed distance function (SDF), and, in turn, to represent an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. Through the learning of a vector field associated with the probability path of conditional SDF distributions, our framework enables accurate sampling of segmentation masks and the computation of relevant statistical measures. This probabilistic approach also facilitates the generation of uncertainty maps represented by the variance, thereby supporting enhanced robustness in prediction and further analysis. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its utility in medical image segmentation applications.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02373-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image segmentation plays an important role in accurately identifying and isolating regions of interest within medical images. Generative approaches are particularly effective in modeling the statistical properties of segmentation masks that are closely related to the respective structures. In this work we introduce FlowSDF, an image-guided conditional flow matching framework, designed to represent the signed distance function (SDF), and, in turn, to represent an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. Through the learning of a vector field associated with the probability path of conditional SDF distributions, our framework enables accurate sampling of segmentation masks and the computation of relevant statistical measures. This probabilistic approach also facilitates the generation of uncertainty maps represented by the variance, thereby supporting enhanced robustness in prediction and further analysis. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its utility in medical image segmentation applications.

医学图像分割在准确识别和隔离医学图像中的感兴趣区域方面发挥着重要作用。生成方法在模拟与各自结构密切相关的分割掩膜的统计特性方面尤为有效。在这项工作中,我们引入了 FlowSDF,这是一种图像引导的条件流匹配框架,旨在表示符号距离函数(SDF),进而表示分割掩膜的隐式分布。与二进制掩码相比,利用 SDF 的优势在于更自然的失真。通过学习与条件 SDF 分布的概率路径相关的向量场,我们的框架可以对分割掩码进行精确采样,并计算相关的统计量。这种概率方法还有助于生成以方差为代表的不确定性图,从而支持增强预测和进一步分析的鲁棒性。我们定性和定量地说明了所提方法在公共细胞核和腺体分割数据集上的优越性能,突出了它在医学影像分割应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信