Analysis of Electronic Structure and Binding Energy in Five-Electron GaAs/AlxGa1-xAs Quantum Dots Under Penetrable Confinement Potential

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Yusuf Yakar, Bekir Çakır, Ayhan Özmen
{"title":"Analysis of Electronic Structure and Binding Energy in Five-Electron GaAs/AlxGa1-xAs Quantum Dots Under Penetrable Confinement Potential","authors":"Yusuf Yakar, Bekir Çakır, Ayhan Özmen","doi":"10.1002/adts.202401375","DOIUrl":null,"url":null,"abstract":"In this study, the calculation of average and orbital energies for the ground and excited configurations of five-electron quantum dots (QDs) is performed using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) methods. The average Coulomb and exchange energies of electron pairs, along with one-electron kinetic and Coulomb potential energies, are calculated as a function of the dot radius. A penetrable confinement potential is used as a model to investigate the effects of confinement on both average and orbital energies. Furthermore, this study examines how confinement influences electron probability densities inside and outside the quantum well for ground and excited state configurations. Additionally, the configuration-average binding energy is computed at two different values of the confinement potential. The main conclusion is that the average energy and binding energy go up when the confinement radius is reduced and eventually reach at a fixed value. Other energies rise steadily until reaching their maximum values, after which they decline rapidly as the dot radius continues to decrease. For configurations <span data-altimg=\"/cms/asset/5e24a8e6-5333-4576-b8f2-d6170b96ceea/adts202401375-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"159\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401375-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4,7,8,9\" data-semantic-content=\"10,11,12,13,14\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"1 normal s squared 2 normal s squared n l\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"5,6\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401375:adts202401375-math-0001\" display=\"inline\" location=\"graphic/adts202401375-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4,7,8,9\" data-semantic-content=\"10,11,12,13,14\" data-semantic-role=\"implicit\" data-semantic-speech=\"1 normal s squared 2 normal s squared n l\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msup data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msup data-semantic-=\"\" data-semantic-children=\"5,6\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">l</mi></mrow>$1{{\\mathrm{s}}^2}2{{\\mathrm{s}}^2}nl$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <span data-altimg=\"/cms/asset/72e7c267-2bf2-4650-958e-fa94585f4acc/adts202401375-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"160\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401375-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"25\" data-semantic-content=\"0,26\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left bracket n l equals 2 normal p comma 3 normal d a n d 4 normal f right bracket\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"27\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"20,6,24\" data-semantic-content=\"6\" data-semantic- data-semantic-parent=\"27\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"17,19\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"16\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"20\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,5\" data-semantic-content=\"18\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"25\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"7,8,10,14,15\" data-semantic-content=\"21,12,22,23\" data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.28em;\"></mjx-mspace><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mspace style=\"width: 0.28em;\"></mjx-mspace></mjx-mrow><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"27\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401375:adts202401375-math-0002\" display=\"inline\" location=\"graphic/adts202401375-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"25\" data-semantic-content=\"0,26\" data-semantic-role=\"leftright\" data-semantic-speech=\"left bracket n l equals 2 normal p comma 3 normal d a n d 4 normal f right bracket\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"27\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">[</mo><mrow data-semantic-=\"\" data-semantic-children=\"20,6,24\" data-semantic-content=\"6\" data-semantic-parent=\"27\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-children=\"17,19\" data-semantic-content=\"3\" data-semantic-parent=\"25\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"16\" data-semantic-parent=\"20\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">l</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"20\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,5\" data-semantic-content=\"18\" data-semantic-parent=\"20\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"19\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">p</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"25\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"7,8,10,14,15\" data-semantic-content=\"21,12,22,23\" data-semantic-parent=\"25\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"24\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">d</mi><mspace data-semantic-=\"\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"space\" data-semantic-type=\"operator\" width=\"0.28em\"></mspace><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"24\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">and</mi><mspace width=\"0.28em\"></mspace></mrow><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"24\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">f</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"27\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">]</mo></mrow>$[ {nl = 2{\\mathrm{p}}, 3{\\mathrm{d\\;and\\;}}4{\\mathrm{f}}} ]$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, an increase in the 1s and 2s orbital energies is observed when the electron in the <i>nl</i> orbital begins to penetrate the quantum well.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401375","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the calculation of average and orbital energies for the ground and excited configurations of five-electron quantum dots (QDs) is performed using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) methods. The average Coulomb and exchange energies of electron pairs, along with one-electron kinetic and Coulomb potential energies, are calculated as a function of the dot radius. A penetrable confinement potential is used as a model to investigate the effects of confinement on both average and orbital energies. Furthermore, this study examines how confinement influences electron probability densities inside and outside the quantum well for ground and excited state configurations. Additionally, the configuration-average binding energy is computed at two different values of the confinement potential. The main conclusion is that the average energy and binding energy go up when the confinement radius is reduced and eventually reach at a fixed value. Other energies rise steadily until reaching their maximum values, after which they decline rapidly as the dot radius continues to decrease. For configurations 1s22s2nl$1{{\mathrm{s}}^2}2{{\mathrm{s}}^2}nl$ [nl=2p,3dand4f]$[ {nl = 2{\mathrm{p}}, 3{\mathrm{d\;and\;}}4{\mathrm{f}}} ]$, an increase in the 1s and 2s orbital energies is observed when the electron in the nl orbital begins to penetrate the quantum well.

Abstract Image

穿透约束势能下五电子 GaAs/AlxGa1-xAs 量子点的电子结构和结合能分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信