Dimensional tunability and photoluminescence triggered by solvent encapsulation strategies in hybrid materials

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Bo Zhuang, Qiang-Qiang Jia, Zhi-Long Li, Jiu-Yang Liu, Ying Wang, Jia-Xun Li, Kun Ding, Zunqi Liu, Da-Wei Fu
{"title":"Dimensional tunability and photoluminescence triggered by solvent encapsulation strategies in hybrid materials","authors":"Bo Zhuang, Qiang-Qiang Jia, Zhi-Long Li, Jiu-Yang Liu, Ying Wang, Jia-Xun Li, Kun Ding, Zunqi Liu, Da-Wei Fu","doi":"10.1039/d5qi00331h","DOIUrl":null,"url":null,"abstract":"Hybrid organic–inorganic halides have emerged as promising candidates for optoelectronic applications such as smart sensors, photodetectors and optical memory, due to their structural tunability, environmental stability, and high photoluminescence quantum yield (PLQY). Despite these merits, integrating switchable dielectric responses with strong luminescence in low-dimensional hybrid antimony materials remains exceptionally rare. Therefore, adjusting the dimensionality and enhancing the photoluminescence properties of hybrid antimony materials remains an important challenge. Herein, two different dimensional hybrid antimony bromide materials, namely (IBA)2SbBr5 and (IBA)6SbBr6·3Br (IBA = isobutylamine), were synthesized using a solvent encapsulation strategy. By taking advantage of the subtle dynamics arising from the solution composition during crystal growth, we realized two distinct structures with a switchable dielectric response. (IBA)6SbBr6·3Br features an independent octahedral structure, and its low-dimensional contributes to a high quantum yield of 10.22%. In contrast, (IBA)2SbBr5, which has a 1D structure, exhibits a higher phase transition temperature, along with a ferroelastic phase transition. Our targeted synthesis provides effective tools to illuminate the structural factors contributing to photoluminescence and enables precise formation of hybrid organic–inorganic halides switching materials.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"56 7 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00331h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid organic–inorganic halides have emerged as promising candidates for optoelectronic applications such as smart sensors, photodetectors and optical memory, due to their structural tunability, environmental stability, and high photoluminescence quantum yield (PLQY). Despite these merits, integrating switchable dielectric responses with strong luminescence in low-dimensional hybrid antimony materials remains exceptionally rare. Therefore, adjusting the dimensionality and enhancing the photoluminescence properties of hybrid antimony materials remains an important challenge. Herein, two different dimensional hybrid antimony bromide materials, namely (IBA)2SbBr5 and (IBA)6SbBr6·3Br (IBA = isobutylamine), were synthesized using a solvent encapsulation strategy. By taking advantage of the subtle dynamics arising from the solution composition during crystal growth, we realized two distinct structures with a switchable dielectric response. (IBA)6SbBr6·3Br features an independent octahedral structure, and its low-dimensional contributes to a high quantum yield of 10.22%. In contrast, (IBA)2SbBr5, which has a 1D structure, exhibits a higher phase transition temperature, along with a ferroelastic phase transition. Our targeted synthesis provides effective tools to illuminate the structural factors contributing to photoluminescence and enables precise formation of hybrid organic–inorganic halides switching materials.
混合材料的尺寸可调性和溶剂封装策略引发的光致发光
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信