Carlota Leonardo-Sousa, Rodrigo Barriga, Helena F Florindo, Rita C Acúrcio, Rita C Guedes
{"title":"Structural insights and clinical advances in small-molecule inhibitors targeting TGF-β receptor I.","authors":"Carlota Leonardo-Sousa, Rodrigo Barriga, Helena F Florindo, Rita C Acúrcio, Rita C Guedes","doi":"10.1016/j.omton.2025.200945","DOIUrl":null,"url":null,"abstract":"<p><p>The dysregulation of the transforming growth factor β (TGF-β) signaling pathway plays a critical role in the onset and progression of several diseases, including cancer. Notably, TGF-β has emerged as a significant barrier to effective outcomes in cancer immunotherapies, particularly those using immune checkpoint inhibitors. In response to this challenge, small-molecule inhibitors targeting the TGF-β receptor I (TGF-βRI) have garnered attention as promising candidates for modulating the TGF-β signaling pathway. This comprehensive review focuses on the development of small-molecule inhibitors targeting TGF-βRI. We provide a detailed analysis of the structural biology of TGF-βRI, highlighting key binding interactions and structural insights derived from high-resolution X-ray crystal structures. Additionally, we review the current landscape of TGF-βRI inhibitors in clinical trials, including eight promising inhibitors, and discuss their mechanisms of action, selectivity, and therapeutic potential. Our investigation extends to the patent literature, summarizing over 2 decades of innovation from leading pharmaceutical companies, spanning January 2000-May 2024. This consolidated structural and biochemical knowledge aims to facilitate the design of next-generation TGF-βRI inhibitors, addressing unmet clinical needs in oncology and fibrosis treatment. The synergistic potential of combining TGF-βRI and immune checkpoint inhibitors is also explored, offering promising avenues for enhancing cancer immunotherapy efficacy.</p>","PeriodicalId":519884,"journal":{"name":"Molecular therapy. Oncology","volume":"33 1","pages":"200945"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular therapy. Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.omton.2025.200945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dysregulation of the transforming growth factor β (TGF-β) signaling pathway plays a critical role in the onset and progression of several diseases, including cancer. Notably, TGF-β has emerged as a significant barrier to effective outcomes in cancer immunotherapies, particularly those using immune checkpoint inhibitors. In response to this challenge, small-molecule inhibitors targeting the TGF-β receptor I (TGF-βRI) have garnered attention as promising candidates for modulating the TGF-β signaling pathway. This comprehensive review focuses on the development of small-molecule inhibitors targeting TGF-βRI. We provide a detailed analysis of the structural biology of TGF-βRI, highlighting key binding interactions and structural insights derived from high-resolution X-ray crystal structures. Additionally, we review the current landscape of TGF-βRI inhibitors in clinical trials, including eight promising inhibitors, and discuss their mechanisms of action, selectivity, and therapeutic potential. Our investigation extends to the patent literature, summarizing over 2 decades of innovation from leading pharmaceutical companies, spanning January 2000-May 2024. This consolidated structural and biochemical knowledge aims to facilitate the design of next-generation TGF-βRI inhibitors, addressing unmet clinical needs in oncology and fibrosis treatment. The synergistic potential of combining TGF-βRI and immune checkpoint inhibitors is also explored, offering promising avenues for enhancing cancer immunotherapy efficacy.