Validating large language models against manual information extraction from case reports of drug-induced parkinsonism in patients with schizophrenia spectrum and mood disorders: a proof of concept study.

IF 3 Q2 PSYCHIATRY
Sebastian Volkmer, Alina Glück, Andreas Meyer-Lindenberg, Emanuel Schwarz, Dusan Hirjak
{"title":"Validating large language models against manual information extraction from case reports of drug-induced parkinsonism in patients with schizophrenia spectrum and mood disorders: a proof of concept study.","authors":"Sebastian Volkmer, Alina Glück, Andreas Meyer-Lindenberg, Emanuel Schwarz, Dusan Hirjak","doi":"10.1038/s41537-025-00601-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this proof of concept study, we demonstrated how Large Language Models (LLMs) can automate the conversion of unstructured case reports into clinical ratings. By leveraging instructions from a standardized clinical rating scale and evaluating the LLM's confidence in its outputs, we aimed to refine prompting strategies and enhance reproducibility. Using this strategy and case reports of drug-induced Parkinsonism, we showed that LLM-extracted data closely align with clinical rater manual extraction, achieving an accuracy of 90%.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"47"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00601-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this proof of concept study, we demonstrated how Large Language Models (LLMs) can automate the conversion of unstructured case reports into clinical ratings. By leveraging instructions from a standardized clinical rating scale and evaluating the LLM's confidence in its outputs, we aimed to refine prompting strategies and enhance reproducibility. Using this strategy and case reports of drug-induced Parkinsonism, we showed that LLM-extracted data closely align with clinical rater manual extraction, achieving an accuracy of 90%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信