The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shivaram Mani, Paul Hurley, André van Schaik, Travis Monk
{"title":"The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes.","authors":"Shivaram Mani, Paul Hurley, André van Schaik, Travis Monk","doi":"10.1162/neco_a_01750","DOIUrl":null,"url":null,"abstract":"<p><p>Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-31"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01750","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.

泄漏的积分与发射神经元是复合泊松过程的变化点探测器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信