Adding Space to Random Networks of Spiking Neurons: A Method Based on Scaling the Network Size.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cecilia Romaro, Jose Roberto Castilho Piqueira, A C Roque
{"title":"Adding Space to Random Networks of Spiking Neurons: A Method Based on Scaling the Network Size.","authors":"Cecilia Romaro, Jose Roberto Castilho Piqueira, A C Roque","doi":"10.1162/neco_a_01747","DOIUrl":null,"url":null,"abstract":"<p><p>Many spiking neural network models are based on random graphs that do not include topological and structural properties featured in real brain networks. To turn these models into spatial networks that describe the topographic arrangement of connections is a challenging task because one has to deal with neurons at the spatial network boundary. Addition of space may generate spurious network behavior like oscillations introduced by periodic boundary conditions or unbalanced neuronal spiking due to lack or excess of connections. Here, we introduce a boundary solution method for networks with added spatial extension that prevents the occurrence of spurious spiking behavior. The method is based on a recently proposed technique for scaling the network size that preserves first- and second-order statistics.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-30"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01747","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many spiking neural network models are based on random graphs that do not include topological and structural properties featured in real brain networks. To turn these models into spatial networks that describe the topographic arrangement of connections is a challenging task because one has to deal with neurons at the spatial network boundary. Addition of space may generate spurious network behavior like oscillations introduced by periodic boundary conditions or unbalanced neuronal spiking due to lack or excess of connections. Here, we introduce a boundary solution method for networks with added spatial extension that prevents the occurrence of spurious spiking behavior. The method is based on a recently proposed technique for scaling the network size that preserves first- and second-order statistics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信