Purified fibers in chemically defined synthetic diets destabilize the gut microbiome of an omnivorous insect model.

Frontiers in microbiomes Pub Date : 2024-01-01 Epub Date: 2024-12-11 DOI:10.3389/frmbi.2024.1477521
Rachel Louise Dockman, Elizabeth A Ottesen
{"title":"Purified fibers in chemically defined synthetic diets destabilize the gut microbiome of an omnivorous insect model.","authors":"Rachel Louise Dockman, Elizabeth A Ottesen","doi":"10.3389/frmbi.2024.1477521","DOIUrl":null,"url":null,"abstract":"<p><p>The macronutrient composition of a host's diet shapes its gut microbial community, with dietary fiber in particular escaping host digestion to serve as a potent carbon source for gut microbiota. Despite widespread recognition of fiber's importance to microbiome health, nutritional research often fails to differentiate hyper-processed fibers from cell-matrix-derived intrinsic fibers, limiting our understanding of how individual polysaccharides influence the gut community. We use the American cockroach (<i>Periplaneta americana</i>) as a model system to dissect the response of complex gut microbial communities to dietary modifications that are difficult to test in traditional host models. Here, we designed synthetic diets from lab-grade, purified ingredients to identify how the cockroach microbiome responds to six different carbohydrates (chitin, methylcellulose, microcrystalline cellulose, pectin, starch, and xylan) in otherwise balanced diets. We show via 16S rRNA gene profiling that these synthetic diets reduce bacterial diversity and alter the phylogenetic composition of cockroach gut microbiota in a fiber-dependent manner, regardless of the vitamin and protein content of the diet. Comparisons with cockroaches fed whole-food diets reveal that synthetic diets induce blooms in common cockroach-associated taxa and subsequently fragment previously stable microbial correlation networks. Our research leverages an unconventional microbiome model system and customizable lab-grade artificial diets to shed light on how purified polysaccharides, as opposed to nutritionally complex intrinsic fibers, exert substantial influence over a normally stable gut community.</p>","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in microbiomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frmbi.2024.1477521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The macronutrient composition of a host's diet shapes its gut microbial community, with dietary fiber in particular escaping host digestion to serve as a potent carbon source for gut microbiota. Despite widespread recognition of fiber's importance to microbiome health, nutritional research often fails to differentiate hyper-processed fibers from cell-matrix-derived intrinsic fibers, limiting our understanding of how individual polysaccharides influence the gut community. We use the American cockroach (Periplaneta americana) as a model system to dissect the response of complex gut microbial communities to dietary modifications that are difficult to test in traditional host models. Here, we designed synthetic diets from lab-grade, purified ingredients to identify how the cockroach microbiome responds to six different carbohydrates (chitin, methylcellulose, microcrystalline cellulose, pectin, starch, and xylan) in otherwise balanced diets. We show via 16S rRNA gene profiling that these synthetic diets reduce bacterial diversity and alter the phylogenetic composition of cockroach gut microbiota in a fiber-dependent manner, regardless of the vitamin and protein content of the diet. Comparisons with cockroaches fed whole-food diets reveal that synthetic diets induce blooms in common cockroach-associated taxa and subsequently fragment previously stable microbial correlation networks. Our research leverages an unconventional microbiome model system and customizable lab-grade artificial diets to shed light on how purified polysaccharides, as opposed to nutritionally complex intrinsic fibers, exert substantial influence over a normally stable gut community.

在化学定义的合成饮食中的纯化纤维破坏了杂食性昆虫模型的肠道微生物群。
宿主饮食中的常量营养素组成塑造了其肠道微生物群落,尤其是膳食纤维,可以逃离宿主的消化,成为肠道微生物群的有效碳源。尽管人们普遍认识到纤维对微生物群健康的重要性,但营养研究往往无法区分超加工纤维和细胞基质来源的内在纤维,这限制了我们对单个多糖如何影响肠道群落的理解。我们使用美洲大蠊(Periplaneta americana)作为模型系统来剖析复杂的肠道微生物群落对饮食改变的反应,这在传统的宿主模型中很难测试。在这里,我们从实验室级的纯化成分设计了合成饮食,以确定蟑螂微生物组如何对六种不同的碳水化合物(几丁质、甲基纤维素、微晶纤维素、果胶、淀粉和木聚糖)在其他平衡饮食中的反应。我们通过16S rRNA基因分析表明,无论饮食中的维生素和蛋白质含量如何,这些合成饮食都会减少细菌多样性,并以纤维依赖的方式改变蟑螂肠道微生物群的系统发育组成。与喂食全食物的蟑螂的比较表明,合成食物在常见的蟑螂相关分类群中引起大量繁殖,并随后破坏先前稳定的微生物相关网络。我们的研究利用了一个非常规的微生物组模型系统和可定制的实验室级人工饲料,以阐明纯化多糖如何对正常稳定的肠道群落产生实质性影响,而不是营养复杂的内在纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信