Jingzhou Wang, Aiden J Aceves, Nicholas J Friesenhahn, Stephen L Mayo
{"title":"CDRxAbs: Antibody Small-Molecule Conjugates with Computationally Designed Target-Binding Synergy.","authors":"Jingzhou Wang, Aiden J Aceves, Nicholas J Friesenhahn, Stephen L Mayo","doi":"10.1093/protein/gzaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Bioconjugates as therapeutic modalities combine the advantages and offset the disadvantages of their constituent parts to achieve a refined spectrum of action. We combine the concept of bioconjugation with the full atomic simulation capability of computational protein design to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated as CDRxAbs. A CDRxAb incorporates a covalently attached small molecule into an antibody/target binding interface using computational protein design to create an antibody small-molecule conjugate that binds tighter to the target of the small molecule than the small molecule would alone. CDRxAbs are also expected to increase the target binding specificity of their associated small molecules. In a proof-of-concept study using monomeric streptavidin/biotin pairs at either a nanomolar or micromolar-level initial affinity, we designed nanobody-biotin conjugates that exhibited >20-fold affinity improvement against their protein targets with step-wise optimization of binding kinetics and overall protein stability. The workflow explored through this process promises a novel approach to optimize small-molecule based therapeutics and to explore new chemical and target space for molecular-recognition agents in general.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioconjugates as therapeutic modalities combine the advantages and offset the disadvantages of their constituent parts to achieve a refined spectrum of action. We combine the concept of bioconjugation with the full atomic simulation capability of computational protein design to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated as CDRxAbs. A CDRxAb incorporates a covalently attached small molecule into an antibody/target binding interface using computational protein design to create an antibody small-molecule conjugate that binds tighter to the target of the small molecule than the small molecule would alone. CDRxAbs are also expected to increase the target binding specificity of their associated small molecules. In a proof-of-concept study using monomeric streptavidin/biotin pairs at either a nanomolar or micromolar-level initial affinity, we designed nanobody-biotin conjugates that exhibited >20-fold affinity improvement against their protein targets with step-wise optimization of binding kinetics and overall protein stability. The workflow explored through this process promises a novel approach to optimize small-molecule based therapeutics and to explore new chemical and target space for molecular-recognition agents in general.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.