CDRxAbs: Antibody Small-Molecule Conjugates with Computationally Designed Target-Binding Synergy.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingzhou Wang, Aiden J Aceves, Nicholas J Friesenhahn, Stephen L Mayo
{"title":"CDRxAbs: Antibody Small-Molecule Conjugates with Computationally Designed Target-Binding Synergy.","authors":"Jingzhou Wang, Aiden J Aceves, Nicholas J Friesenhahn, Stephen L Mayo","doi":"10.1093/protein/gzaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Bioconjugates as therapeutic modalities combine the advantages and offset the disadvantages of their constituent parts to achieve a refined spectrum of action. We combine the concept of bioconjugation with the full atomic simulation capability of computational protein design to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated as CDRxAbs. A CDRxAb incorporates a covalently attached small molecule into an antibody/target binding interface using computational protein design to create an antibody small-molecule conjugate that binds tighter to the target of the small molecule than the small molecule would alone. CDRxAbs are also expected to increase the target binding specificity of their associated small molecules. In a proof-of-concept study using monomeric streptavidin/biotin pairs at either a nanomolar or micromolar-level initial affinity, we designed nanobody-biotin conjugates that exhibited >20-fold affinity improvement against their protein targets with step-wise optimization of binding kinetics and overall protein stability. The workflow explored through this process promises a novel approach to optimize small-molecule based therapeutics and to explore new chemical and target space for molecular-recognition agents in general.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioconjugates as therapeutic modalities combine the advantages and offset the disadvantages of their constituent parts to achieve a refined spectrum of action. We combine the concept of bioconjugation with the full atomic simulation capability of computational protein design to define a new class of molecular recognition agents: CDR-extended antibodies, abbreviated as CDRxAbs. A CDRxAb incorporates a covalently attached small molecule into an antibody/target binding interface using computational protein design to create an antibody small-molecule conjugate that binds tighter to the target of the small molecule than the small molecule would alone. CDRxAbs are also expected to increase the target binding specificity of their associated small molecules. In a proof-of-concept study using monomeric streptavidin/biotin pairs at either a nanomolar or micromolar-level initial affinity, we designed nanobody-biotin conjugates that exhibited >20-fold affinity improvement against their protein targets with step-wise optimization of binding kinetics and overall protein stability. The workflow explored through this process promises a novel approach to optimize small-molecule based therapeutics and to explore new chemical and target space for molecular-recognition agents in general.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信