Robust privacy amidst innovation with large language models through a critical assessment of the risks.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yao-Shun Chuang, Atiquer Rahman Sarkar, Yu-Chun Hsu, Noman Mohammed, Xiaoqian Jiang
{"title":"Robust privacy amidst innovation with large language models through a critical assessment of the risks.","authors":"Yao-Shun Chuang, Atiquer Rahman Sarkar, Yu-Chun Hsu, Noman Mohammed, Xiaoqian Jiang","doi":"10.1093/jamia/ocaf037","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study evaluates the integration of electronic health records (EHRs) and natural language processing (NLP) with large language models (LLMs) to enhance healthcare data management and patient care, focusing on using advanced language models to create secure, Health Insurance Portability and Accountability Act-compliant synthetic patient notes for global biomedical research.</p><p><strong>Materials and methods: </strong>The study used de-identified and re-identified versions of the MIMIC III dataset with GPT-3.5, GPT-4, and Mistral 7B to generate synthetic clinical notes. Text generation employed templates and keyword extraction for contextually relevant notes, with One-shot generation for comparison. Privacy was assessed by analyzing protected health information (PHI) occurrence and co-occurrence, while utility was evaluated by training an ICD-9 coder using synthetic notes. Text quality was measured using ROUGE (Recall-Oriented Understudy for Gisting Evaluation) and cosine similarity metrics to compare synthetic notes with source notes for semantic similarity.</p><p><strong>Results: </strong>The analysis of PHI occurrence and text utility via the ICD-9 coding task showed that the keyword-based method had low risk and good performance. One-shot generation exhibited the highest PHI exposure and PHI co-occurrence, particularly in geographic location and date categories. The Normalized One-shot method achieved the highest classification accuracy. Re-identified data consistently outperformed de-identified data.</p><p><strong>Discussion: </strong>Privacy analysis revealed a critical balance between data utility and privacy protection, influencing future data use and sharing.</p><p><strong>Conclusion: </strong>This study shows that keyword-based methods can create synthetic clinical notes that protect privacy while retaining data usability, potentially improving clinical data sharing. The use of dummy PHIs to counter privacy attacks may offer better utility and privacy than traditional de-identification.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study evaluates the integration of electronic health records (EHRs) and natural language processing (NLP) with large language models (LLMs) to enhance healthcare data management and patient care, focusing on using advanced language models to create secure, Health Insurance Portability and Accountability Act-compliant synthetic patient notes for global biomedical research.

Materials and methods: The study used de-identified and re-identified versions of the MIMIC III dataset with GPT-3.5, GPT-4, and Mistral 7B to generate synthetic clinical notes. Text generation employed templates and keyword extraction for contextually relevant notes, with One-shot generation for comparison. Privacy was assessed by analyzing protected health information (PHI) occurrence and co-occurrence, while utility was evaluated by training an ICD-9 coder using synthetic notes. Text quality was measured using ROUGE (Recall-Oriented Understudy for Gisting Evaluation) and cosine similarity metrics to compare synthetic notes with source notes for semantic similarity.

Results: The analysis of PHI occurrence and text utility via the ICD-9 coding task showed that the keyword-based method had low risk and good performance. One-shot generation exhibited the highest PHI exposure and PHI co-occurrence, particularly in geographic location and date categories. The Normalized One-shot method achieved the highest classification accuracy. Re-identified data consistently outperformed de-identified data.

Discussion: Privacy analysis revealed a critical balance between data utility and privacy protection, influencing future data use and sharing.

Conclusion: This study shows that keyword-based methods can create synthetic clinical notes that protect privacy while retaining data usability, potentially improving clinical data sharing. The use of dummy PHIs to counter privacy attacks may offer better utility and privacy than traditional de-identification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信