A workflow for human health hazard evaluation using transcriptomic data and key Characteristics-Based gene sets.

IF 3.4 3区 医学 Q2 TOXICOLOGY
Han-Hsuan D Tsai, King David Oware, Fred A Wright, Weihsueh A Chiu, Ivan Rusyn
{"title":"A workflow for human health hazard evaluation using transcriptomic data and key Characteristics-Based gene sets.","authors":"Han-Hsuan D Tsai, King David Oware, Fred A Wright, Weihsueh A Chiu, Ivan Rusyn","doi":"10.1093/toxsci/kfaf036","DOIUrl":null,"url":null,"abstract":"<p><p>Key Characteristics (KCs) are properties of chemicals that are associated with different types of human health hazard. KCs are used for systematic reviews in support of hazard identification. Transcriptomic data are a rich source of mechanistic data and are frequently interpreted through \"enriched\" pathways/gene sets. Such analyses may be challenging to interpret in regulatory science because of redundancy among pathways, complex data analyses, and unclear relevance to hazard identification. We hypothesized that by cross-mapping pathways/gene sets and KCs, the interpretability of transcriptomic data can be improved. We summarized 72 published KCs across 7 hazard traits into 34 umbrella KC terms. Gene sets from Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) were mapped to these, resulting in \"KC gene sets\". These sets exhibit minimal overlap and vary in the number of genes. Comparisons of the same KC gene sets mapped from Reactome and KEGG revealed low similarity, indicating complementarity. Performance of these KC gene sets was tested using publicly available transcriptomic datasets of chemicals with known organ-specific toxicity: Benzene and 2,3,7,8-tetrachlorodibenzo-p-dioxin tested in mouse liver, and drugs sunitinib and amoxicillin tested in human induced pluripotent stem cell-derived cardiomyocytes. We found that KC terms related to the mechanisms affected by tested compounds were highly enriched, while the negative control (amoxicillin) showed limited enrichment with marginal significance. This study's impact is in presenting a computational approach based on KCs for the analysis of toxicogenomic data and facilitating transparent interpretation of these data in the process of chemical hazard identification.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Key Characteristics (KCs) are properties of chemicals that are associated with different types of human health hazard. KCs are used for systematic reviews in support of hazard identification. Transcriptomic data are a rich source of mechanistic data and are frequently interpreted through "enriched" pathways/gene sets. Such analyses may be challenging to interpret in regulatory science because of redundancy among pathways, complex data analyses, and unclear relevance to hazard identification. We hypothesized that by cross-mapping pathways/gene sets and KCs, the interpretability of transcriptomic data can be improved. We summarized 72 published KCs across 7 hazard traits into 34 umbrella KC terms. Gene sets from Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) were mapped to these, resulting in "KC gene sets". These sets exhibit minimal overlap and vary in the number of genes. Comparisons of the same KC gene sets mapped from Reactome and KEGG revealed low similarity, indicating complementarity. Performance of these KC gene sets was tested using publicly available transcriptomic datasets of chemicals with known organ-specific toxicity: Benzene and 2,3,7,8-tetrachlorodibenzo-p-dioxin tested in mouse liver, and drugs sunitinib and amoxicillin tested in human induced pluripotent stem cell-derived cardiomyocytes. We found that KC terms related to the mechanisms affected by tested compounds were highly enriched, while the negative control (amoxicillin) showed limited enrichment with marginal significance. This study's impact is in presenting a computational approach based on KCs for the analysis of toxicogenomic data and facilitating transparent interpretation of these data in the process of chemical hazard identification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信