Perinatal hypoxia-mediated neurodevelopment abnormalities in congenital heart disease mouse model.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Renwei Chen, Haifan Wang, Liqin Zeng, Jiafei He, Xiaohan Liu, Xinting Ji, Paul Yao, Shuo Gu
{"title":"Perinatal hypoxia-mediated neurodevelopment abnormalities in congenital heart disease mouse model.","authors":"Renwei Chen, Haifan Wang, Liqin Zeng, Jiafei He, Xiaohan Liu, Xinting Ji, Paul Yao, Shuo Gu","doi":"10.1186/s10020-025-01158-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cyanotic congenital heart disease (CHD) in children has been associated with neurodevelopmental abnormalities, although the underlying mechanisms remain largely unknown. Multiple factors are likely involved in this process. This research aims to explore the potential effects of hypoxia and vascular system-derived factors in neurodevelopmental outcomes in offspring.</p><p><strong>Methods: </strong>Mouse aorta endothelial cells (MEC) and amygdala neurons were isolated to investigate the effects of hypoxia on pro-inflammatory cytokine release, gene expression, redox balance, mitochondrial function, and epigenetic modifications. A CHD mouse model was established to evaluate the impact of perinatal hypoxia on fetal brain development. Estrogen receptor β (ERβ) expression in endothelial cells was modulated using Tie2-driven lentivirus both in vitro and in vivo study to assess the vascular system's contribution to hypoxia-mediated neurodevelopmental abnormalities.</p><p><strong>Results: </strong>Hypoxia exposure, along with factors released from MEC, led to altered gene expression, oxidative stress, mitochondrial dysfunction, and epigenetic modifications in amygdala neurons. In the CHD mouse model, perinatal hypoxia resulted in compromised vascular function, altered gene expression, disrupted redox balance in brain tissues, and impaired behavioral outcomes in offspring. Prenatal expression of ERβ in endothelial cells partially ameliorated these neurodevelopmental abnormalities, while prenatal knockdown of ERβ mimicked the effects of perinatal hypoxia.</p><p><strong>Conclusions: </strong>Hypoxia, combined with endothelial cell-derived factors, induces epigenetic changes in neurons. In the CHD mouse model, perinatal hypoxia causes vascular dysfunction, altered gene expression, and redox imbalance in brain tissues, leading to behavioral impairments in offspring. Prenatal expression of ERβ in endothelial cells mitigates these effects, suggesting that modulating gene expression in the vascular system during pregnancy could play a protective role against hypoxia-induced neurodevelopmental abnormalities in CHD.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"109"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01158-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cyanotic congenital heart disease (CHD) in children has been associated with neurodevelopmental abnormalities, although the underlying mechanisms remain largely unknown. Multiple factors are likely involved in this process. This research aims to explore the potential effects of hypoxia and vascular system-derived factors in neurodevelopmental outcomes in offspring.

Methods: Mouse aorta endothelial cells (MEC) and amygdala neurons were isolated to investigate the effects of hypoxia on pro-inflammatory cytokine release, gene expression, redox balance, mitochondrial function, and epigenetic modifications. A CHD mouse model was established to evaluate the impact of perinatal hypoxia on fetal brain development. Estrogen receptor β (ERβ) expression in endothelial cells was modulated using Tie2-driven lentivirus both in vitro and in vivo study to assess the vascular system's contribution to hypoxia-mediated neurodevelopmental abnormalities.

Results: Hypoxia exposure, along with factors released from MEC, led to altered gene expression, oxidative stress, mitochondrial dysfunction, and epigenetic modifications in amygdala neurons. In the CHD mouse model, perinatal hypoxia resulted in compromised vascular function, altered gene expression, disrupted redox balance in brain tissues, and impaired behavioral outcomes in offspring. Prenatal expression of ERβ in endothelial cells partially ameliorated these neurodevelopmental abnormalities, while prenatal knockdown of ERβ mimicked the effects of perinatal hypoxia.

Conclusions: Hypoxia, combined with endothelial cell-derived factors, induces epigenetic changes in neurons. In the CHD mouse model, perinatal hypoxia causes vascular dysfunction, altered gene expression, and redox imbalance in brain tissues, leading to behavioral impairments in offspring. Prenatal expression of ERβ in endothelial cells mitigates these effects, suggesting that modulating gene expression in the vascular system during pregnancy could play a protective role against hypoxia-induced neurodevelopmental abnormalities in CHD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信