Automatic colon segmentation on T1-FS MR images

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Bernat Orellana , Isabel Navazo , Pere Brunet , Eva Monclús , Álvaro Bendezú , Fernando Azpiroz
{"title":"Automatic colon segmentation on T1-FS MR images","authors":"Bernat Orellana ,&nbsp;Isabel Navazo ,&nbsp;Pere Brunet ,&nbsp;Eva Monclús ,&nbsp;Álvaro Bendezú ,&nbsp;Fernando Azpiroz","doi":"10.1016/j.compmedimag.2025.102528","DOIUrl":null,"url":null,"abstract":"<div><div>The volume and distribution of the colonic contents provides valuable insights into the effects of diet on gut microbiotica involving both clinical diagnosis and research. In terms of Magnetic Resonance Imaging modalities, T2-weighted images allow the segmentation of the colon lumen, while fecal and gas contents can be only distinguished on the T1-weighted Fat-Sat modality. However, the manual segmentation of T1-weighted Fat-Sat is challenging, and no automatic segmentation methods are known.</div><div>This paper proposed a non-supervised algorithm providing an accurate T1-weighted Fat-Sat colon segmentation via the registration of an existing colon segmentation in T2-weighted modality.</div><div>The algorithm consists of two phases. It starts with a registration process based on a classical deformable registration method, followed by a novel Iterative Colon Registration process that utilizes a mesh deformation approach. This approach is guided by a probabilistic model that provides the likelihood of the colon boundary, followed by a shape preservation process of the colon segmentation on T2-weighted images. The iterative process converges to achieve an optimal fit for colon segmentation in T1-weighted Fat-Sat images.</div><div>The segmentation algorithm has been tested on multiple datasets (154 scans) and acquisition machines (3) as part of the proof of concept for the proposed methodology. The quantitative evaluation was based on two metrics: the percentage of ground truth labeled feces correctly identified by our proposal (<span><math><mrow><mn>93</mn><mo>±</mo><mn>5</mn><mtext>%</mtext></mrow></math></span>), and the volume variation between the existing colon segmentation in the T2-weighted modality and the colon segmentation computed in T1-weighted Fat-Sat images.</div><div>Quantitative and medical evaluations demonstrated a degree of accuracy, usability, and stability concerning the acquisition hardware, making the algorithm suitable for clinical application and research.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102528"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000370","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The volume and distribution of the colonic contents provides valuable insights into the effects of diet on gut microbiotica involving both clinical diagnosis and research. In terms of Magnetic Resonance Imaging modalities, T2-weighted images allow the segmentation of the colon lumen, while fecal and gas contents can be only distinguished on the T1-weighted Fat-Sat modality. However, the manual segmentation of T1-weighted Fat-Sat is challenging, and no automatic segmentation methods are known.
This paper proposed a non-supervised algorithm providing an accurate T1-weighted Fat-Sat colon segmentation via the registration of an existing colon segmentation in T2-weighted modality.
The algorithm consists of two phases. It starts with a registration process based on a classical deformable registration method, followed by a novel Iterative Colon Registration process that utilizes a mesh deformation approach. This approach is guided by a probabilistic model that provides the likelihood of the colon boundary, followed by a shape preservation process of the colon segmentation on T2-weighted images. The iterative process converges to achieve an optimal fit for colon segmentation in T1-weighted Fat-Sat images.
The segmentation algorithm has been tested on multiple datasets (154 scans) and acquisition machines (3) as part of the proof of concept for the proposed methodology. The quantitative evaluation was based on two metrics: the percentage of ground truth labeled feces correctly identified by our proposal (93±5%), and the volume variation between the existing colon segmentation in the T2-weighted modality and the colon segmentation computed in T1-weighted Fat-Sat images.
Quantitative and medical evaluations demonstrated a degree of accuracy, usability, and stability concerning the acquisition hardware, making the algorithm suitable for clinical application and research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信