Construction and validation of a nomogram model for predicting peritoneal metastasis in gastric cancer based on ferroptosis-relate genes and clinicopathological features.

IF 2 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Journal of gastrointestinal oncology Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.21037/jgo-24-670
Xiaotong Sun, Kaipeng Duan, Xiaochun Shen, Chao Dong, Yajing Zhou, Tao Chen, Weikang Li, Peiyuan Li, Pengbo Wang, Dongbao Li, Jin Zhou
{"title":"Construction and validation of a nomogram model for predicting peritoneal metastasis in gastric cancer based on ferroptosis-relate genes and clinicopathological features.","authors":"Xiaotong Sun, Kaipeng Duan, Xiaochun Shen, Chao Dong, Yajing Zhou, Tao Chen, Weikang Li, Peiyuan Li, Pengbo Wang, Dongbao Li, Jin Zhou","doi":"10.21037/jgo-24-670","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer peritoneal metastasis (GCPM) is a lethal condition. Current diagnostic methods for GCPM, such as imaging and serum tumor markers, lack specificity and sensitivity. Research suggests that utilizing gene signatures to predict GCPM shows significant predictive ability. Nonetheless, the predictability of GCPM using ferroptosis-related genes (FRGs) remains unknown. We aim to construct a nomogram based on FRGs for early diagnosis of GCPM.</p><p><strong>Methods: </strong>RNA sequencing and clinical data of patients with gastric cancer (GC) were downloaded from Gene Expression Omnibus (GEO) databases. GCPM was diagnosed through imaging, biopsy and cytology. A GCPM prediction model was developed based on six distinctively expressed FRGs, and the efficiency of the model was assessed through receiver operating characteristic (ROC) curves in both experimental and validation cohorts. Subsequently, 115 clinical samples were examined by immunohistochemistry (IHC) to validate the prediction model's accuracy.</p><p><strong>Results: </strong>Our analysis included 282 patients, among whom 54 had GCPM while 228 did not. Patients were randomly distributed into experimental and validation groups at a 3:2 ratio. Least absolute shrinkage and selection operator (LASSO) regression identified the coefficients of six FRGs, with a risk score calculated for every patient. Univariate and multivariate logistic analyses revealed that both risk score and pathological stage were significantly associated with GCPM. The area under the curve (AUC) values for the training and validating sets implied good predictability for GCPM (0.827 and 0.767, respectively). Combining the risk score with the tumor node metastasis (TNM) stage substantially improved predictability (AUCs were 0.916 and 0.848 respectively). Lastly, a nomogram incorporating the risk score and TNM stage was constructed, which shows good clinical utility through decision curve analysis (DCA). The IHC results from 115 clinical samples were consistent with these findings.</p><p><strong>Conclusions: </strong>A nomogram model based on FRGs and clinicopathological features was constructed, demonstrating impressive predictive value for GCPM. This enables timely and personalized therapeutic interventions, thereby benefiting gastric cancer patients.</p>","PeriodicalId":15841,"journal":{"name":"Journal of gastrointestinal oncology","volume":"16 1","pages":"264-280"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of gastrointestinal oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/jgo-24-670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gastric cancer peritoneal metastasis (GCPM) is a lethal condition. Current diagnostic methods for GCPM, such as imaging and serum tumor markers, lack specificity and sensitivity. Research suggests that utilizing gene signatures to predict GCPM shows significant predictive ability. Nonetheless, the predictability of GCPM using ferroptosis-related genes (FRGs) remains unknown. We aim to construct a nomogram based on FRGs for early diagnosis of GCPM.

Methods: RNA sequencing and clinical data of patients with gastric cancer (GC) were downloaded from Gene Expression Omnibus (GEO) databases. GCPM was diagnosed through imaging, biopsy and cytology. A GCPM prediction model was developed based on six distinctively expressed FRGs, and the efficiency of the model was assessed through receiver operating characteristic (ROC) curves in both experimental and validation cohorts. Subsequently, 115 clinical samples were examined by immunohistochemistry (IHC) to validate the prediction model's accuracy.

Results: Our analysis included 282 patients, among whom 54 had GCPM while 228 did not. Patients were randomly distributed into experimental and validation groups at a 3:2 ratio. Least absolute shrinkage and selection operator (LASSO) regression identified the coefficients of six FRGs, with a risk score calculated for every patient. Univariate and multivariate logistic analyses revealed that both risk score and pathological stage were significantly associated with GCPM. The area under the curve (AUC) values for the training and validating sets implied good predictability for GCPM (0.827 and 0.767, respectively). Combining the risk score with the tumor node metastasis (TNM) stage substantially improved predictability (AUCs were 0.916 and 0.848 respectively). Lastly, a nomogram incorporating the risk score and TNM stage was constructed, which shows good clinical utility through decision curve analysis (DCA). The IHC results from 115 clinical samples were consistent with these findings.

Conclusions: A nomogram model based on FRGs and clinicopathological features was constructed, demonstrating impressive predictive value for GCPM. This enables timely and personalized therapeutic interventions, thereby benefiting gastric cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
171
期刊介绍: ournal of Gastrointestinal Oncology (Print ISSN 2078-6891; Online ISSN 2219-679X; J Gastrointest Oncol; JGO), the official journal of Society for Gastrointestinal Oncology (SGO), is an open-access, international peer-reviewed journal. It is published quarterly (Sep. 2010- Dec. 2013), bimonthly (Feb. 2014 -) and openly distributed worldwide. JGO publishes manuscripts that focus on updated and practical information about diagnosis, prevention and clinical investigations of gastrointestinal cancer treatment. Specific areas of interest include, but not limited to, multimodality therapy, markers, imaging and tumor biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信