PRMT5 attenuates regorafenib-induced DNA damage in hepatocellular carcinoma cells through symmetric dimethylation of RPL14.

IF 2 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Journal of gastrointestinal oncology Pub Date : 2025-02-28 Epub Date: 2025-02-26 DOI:10.21037/jgo-24-737
Wendi Bi, Xiaojuan Sun, Qiuyun Yi, Xinyu Jiang, Huisi He, Lixuan Jiang, Zhecai Fan, Hailing Huang, Wen Wen, Xiaoqing Jiang
{"title":"PRMT5 attenuates regorafenib-induced DNA damage in hepatocellular carcinoma cells through symmetric dimethylation of RPL14.","authors":"Wendi Bi, Xiaojuan Sun, Qiuyun Yi, Xinyu Jiang, Huisi He, Lixuan Jiang, Zhecai Fan, Hailing Huang, Wen Wen, Xiaoqing Jiang","doi":"10.21037/jgo-24-737","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regorafenib has been approved for second-line treatment of hepatocellular carcinoma (HCC) following sorafenib failure, but resistance to targeted therapy remains a major challenge. Enhancing the therapeutic sensitivity of HCC cells to regorafenib is crucial for improving treatment outcomes. This study aims to elucidate the role of PRMT5 in HCC and its impact on regorafenib sensitivity. Specifically, it focuses on the regulatory relationship between PRMT5 and RPL14, investigating their influence on DNA damage repair and drug resistance mechanisms in HCC.</p><p><strong>Methods: </strong>A stable PRMT5-overexpressing HCC cell line was constructed via lentiviral infection. Immunoprecipitation was employed to examine whether PRMT5 catalyzes the symmetric dimethylation of RPL14 at arginine residues. Western blot (WB) was used to assess changes in DNA damage markers (γ-H2AX) and DNA repair markers (RAD51) after RPL14 knockdown. Huh7 cells with PRMT5 overexpression, RPL14 knockdown, and combined PRMT5 overexpression and RPL14 knockdown were treated with regorafenib. DNA damage repair-related factors were analyzed using WB and immunofluorescence.</p><p><strong>Results: </strong>Mass spectrometry and immunoprecipitation confirmed the interaction between PRMT5 and RPL14, with PRMT5 catalyzing symmetric dimethylation of RPL14. RPL14 knockdown inhibited HCC cell proliferation, increased sensitivity to regorafenib, and disrupted DNA damage repair, while overexpression had the opposite effect. Regorafenib-treated PRMT5-overexpressing cells showed reduced γ-H2AX expression and improved survival, whereas RPL14 knockdown enhanced γ-H2AX levels and decreased survival. Notably, simultaneous PRMT5 overexpression and RPL14 knockdown significantly elevated γ-H2AX expression compared to PRMT5 overexpression alone, leading to reduced cell viability. These results suggest that PRMT5 modulates DNA damage repair through RPL14, influencing the sensitivity of HCC cells to regorafenib.</p><p><strong>Conclusions: </strong>PRMT5-mediated symmetric dimethylation of RPL14 stabilizes the protein, promoting DNA damage repair and contributing to regorafenib resistance in HCC. RPL14 plays a key role in PRMT5-driven enhancement of DNA damage repair and reduced drug sensitivity, identifying RPL14 as a potential therapeutic target to overcome regorafenib resistance in HCC.</p>","PeriodicalId":15841,"journal":{"name":"Journal of gastrointestinal oncology","volume":"16 1","pages":"191-208"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of gastrointestinal oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/jgo-24-737","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Regorafenib has been approved for second-line treatment of hepatocellular carcinoma (HCC) following sorafenib failure, but resistance to targeted therapy remains a major challenge. Enhancing the therapeutic sensitivity of HCC cells to regorafenib is crucial for improving treatment outcomes. This study aims to elucidate the role of PRMT5 in HCC and its impact on regorafenib sensitivity. Specifically, it focuses on the regulatory relationship between PRMT5 and RPL14, investigating their influence on DNA damage repair and drug resistance mechanisms in HCC.

Methods: A stable PRMT5-overexpressing HCC cell line was constructed via lentiviral infection. Immunoprecipitation was employed to examine whether PRMT5 catalyzes the symmetric dimethylation of RPL14 at arginine residues. Western blot (WB) was used to assess changes in DNA damage markers (γ-H2AX) and DNA repair markers (RAD51) after RPL14 knockdown. Huh7 cells with PRMT5 overexpression, RPL14 knockdown, and combined PRMT5 overexpression and RPL14 knockdown were treated with regorafenib. DNA damage repair-related factors were analyzed using WB and immunofluorescence.

Results: Mass spectrometry and immunoprecipitation confirmed the interaction between PRMT5 and RPL14, with PRMT5 catalyzing symmetric dimethylation of RPL14. RPL14 knockdown inhibited HCC cell proliferation, increased sensitivity to regorafenib, and disrupted DNA damage repair, while overexpression had the opposite effect. Regorafenib-treated PRMT5-overexpressing cells showed reduced γ-H2AX expression and improved survival, whereas RPL14 knockdown enhanced γ-H2AX levels and decreased survival. Notably, simultaneous PRMT5 overexpression and RPL14 knockdown significantly elevated γ-H2AX expression compared to PRMT5 overexpression alone, leading to reduced cell viability. These results suggest that PRMT5 modulates DNA damage repair through RPL14, influencing the sensitivity of HCC cells to regorafenib.

Conclusions: PRMT5-mediated symmetric dimethylation of RPL14 stabilizes the protein, promoting DNA damage repair and contributing to regorafenib resistance in HCC. RPL14 plays a key role in PRMT5-driven enhancement of DNA damage repair and reduced drug sensitivity, identifying RPL14 as a potential therapeutic target to overcome regorafenib resistance in HCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
171
期刊介绍: ournal of Gastrointestinal Oncology (Print ISSN 2078-6891; Online ISSN 2219-679X; J Gastrointest Oncol; JGO), the official journal of Society for Gastrointestinal Oncology (SGO), is an open-access, international peer-reviewed journal. It is published quarterly (Sep. 2010- Dec. 2013), bimonthly (Feb. 2014 -) and openly distributed worldwide. JGO publishes manuscripts that focus on updated and practical information about diagnosis, prevention and clinical investigations of gastrointestinal cancer treatment. Specific areas of interest include, but not limited to, multimodality therapy, markers, imaging and tumor biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信