A Framework for Quantitative Systems Pharmacology Model Execution.

Q1 Pharmacology, Toxicology and Pharmaceutics
Victor Sokolov, Kirill Peskov, Gabriel Helmlinger
{"title":"A Framework for Quantitative Systems Pharmacology Model Execution.","authors":"Victor Sokolov, Kirill Peskov, Gabriel Helmlinger","doi":"10.1007/164_2024_738","DOIUrl":null,"url":null,"abstract":"<p><p>A mathematical model can be defined as a theoretical approximation of an observed pattern. The specific form of the model and the associated mathematical methods are typically dictated by the question(s) to be addressed by the model and the underlying data. In the context of research and development of new medicines, these questions often focus on the dose-exposure-response relationship.The general workflow for model development and application can be delineated in three major elements: defining the model, qualifying the model, and performing simulations. These elements may vary significantly depending on modeling objectives. Quantitative systems pharmacology (QSP) models address the formidable challenge of quantitatively and mechanistically characterizing human and animal biology, pathophysiology, and therapeutic intervention.QSP model development, by necessity, relies heavily on preexisting knowledge, requires a comprehensive understanding of current physiological concepts, and often makes use of heterogeneous and aggregated datasets from multiple sources. This reliance on diverse datasets presents an upfront challenge: the determination of an optimal model structure while balancing model complexity and uncertainty. Additionally, QSP model calibration is arduous due to data scarcity (particularly at the human subject level), which necessitates the use of a variety of parameter estimation approaches and sensitivity analyses, earlier in the modeling workflow as compared to, for example, population modeling. Finally, the interpretation of model-based predictions must be thoughtfully aligned with the data and the mathematical methods applied during model development.The purpose of this chapter is to provide readers with a high-level yet comprehensive overview of a QSP modeling workflow, with an emphasis on the various challenges encountered in this process. The workflow is centered around the construction of ordinary differential equation models and may be extended beyond this framework. It includes the fundamentals of systematic literature reviews, the selection of appropriate structural model equations, the analysis of system behavior, model qualification, and the application of various types of model-based simulations. The chapter concludes with details on existing software options suitable for implementing the described methodologies.This workflow may serve as a valuable resource to both newcomers and experienced QSP modelers, offering an introduction to the field as well as operating procedures and references for routine analyses.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2024_738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

A mathematical model can be defined as a theoretical approximation of an observed pattern. The specific form of the model and the associated mathematical methods are typically dictated by the question(s) to be addressed by the model and the underlying data. In the context of research and development of new medicines, these questions often focus on the dose-exposure-response relationship.The general workflow for model development and application can be delineated in three major elements: defining the model, qualifying the model, and performing simulations. These elements may vary significantly depending on modeling objectives. Quantitative systems pharmacology (QSP) models address the formidable challenge of quantitatively and mechanistically characterizing human and animal biology, pathophysiology, and therapeutic intervention.QSP model development, by necessity, relies heavily on preexisting knowledge, requires a comprehensive understanding of current physiological concepts, and often makes use of heterogeneous and aggregated datasets from multiple sources. This reliance on diverse datasets presents an upfront challenge: the determination of an optimal model structure while balancing model complexity and uncertainty. Additionally, QSP model calibration is arduous due to data scarcity (particularly at the human subject level), which necessitates the use of a variety of parameter estimation approaches and sensitivity analyses, earlier in the modeling workflow as compared to, for example, population modeling. Finally, the interpretation of model-based predictions must be thoughtfully aligned with the data and the mathematical methods applied during model development.The purpose of this chapter is to provide readers with a high-level yet comprehensive overview of a QSP modeling workflow, with an emphasis on the various challenges encountered in this process. The workflow is centered around the construction of ordinary differential equation models and may be extended beyond this framework. It includes the fundamentals of systematic literature reviews, the selection of appropriate structural model equations, the analysis of system behavior, model qualification, and the application of various types of model-based simulations. The chapter concludes with details on existing software options suitable for implementing the described methodologies.This workflow may serve as a valuable resource to both newcomers and experienced QSP modelers, offering an introduction to the field as well as operating procedures and references for routine analyses.

定量系统药理学模型执行的框架。
数学模型可以定义为对观察到的模式的理论近似。模型的具体形式和相关的数学方法通常由模型和底层数据要解决的问题决定。在新药研究和开发的背景下,这些问题往往集中在剂量-暴露-反应关系上。模型开发和应用的一般工作流程可以用三个主要元素来描述:定义模型、限定模型和执行模拟。根据建模目标的不同,这些元素可能会有很大的不同。定量系统药理学(QSP)模型解决了定量和机械表征人类和动物生物学、病理生理学和治疗干预的艰巨挑战。QSP模型的开发,在很大程度上依赖于预先存在的知识,需要对当前生理概念的全面理解,并且经常使用来自多个来源的异构和聚合数据集。这种对不同数据集的依赖提出了一个预先的挑战:在平衡模型复杂性和不确定性的同时确定最佳模型结构。此外,由于数据稀缺(特别是在人类受试者层面),QSP模型校准是艰巨的,这需要在建模工作流程的早期使用各种参数估计方法和灵敏度分析,例如,与人口建模相比。最后,对基于模型的预测的解释必须深思熟虑地与模型开发期间应用的数据和数学方法保持一致。本章的目的是为读者提供QSP建模工作流的高级而全面的概述,重点是在此过程中遇到的各种挑战。工作流以常微分方程模型的构建为中心,可以扩展到这个框架之外。它包括系统文献综述的基础,适当的结构模型方程的选择,系统行为的分析,模型鉴定,以及各种类型的基于模型的模拟的应用。本章最后详细介绍了适用于实现所描述的方法的现有软件选项。该工作流可以作为新手和有经验的QSP建模者的宝贵资源,提供了对该领域的介绍以及操作程序和常规分析的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信