{"title":"Chromosome 1 variants associated with decreased HIV set-point viral load correlate with PRKAB2 expression changes.","authors":"Riley H Tough, Paul J McLaren","doi":"10.3389/fgene.2025.1551171","DOIUrl":null,"url":null,"abstract":"<p><p>A previous study investigated a genomic region on chromosome 1 associated with reduced human immunodeficiency virus type 1 (HIV) set-point viral load, implicating <i>CHD1L</i> as a novel HIV inhibitory factor. However, given that regulatory variants can influence expression of multiple nearby genes, further work is necessary to determine the impact of genetic variants on other genes in the region. This study evaluates the potential for genetic regulation of <i>PRKAB2</i>, a gene located upstream of <i>CHD1L</i> and encoding the β2 regulatory subunit of the AMPK complex, and for downstream impacts on HIV pathogenesis. Using genotype and gene expression data from the Gene Expression Omnibus repository and Genotype-Tissue Expression database, we observed cell-type-specific correlations between <i>CHD1L</i> and <i>PRKAB2</i> expression, with a strong positive association in whole blood and negative correlation in monocytes. Notably, we found that individuals with HIV set-point viral load associated variants exhibited significantly reduced <i>PRKAB2</i> expression in imputed whole blood models and <i>ex vivo</i> monocytes. Functional analyses using <i>PRKAB2</i> <sup>-/-</sup> induced pluripotent stem cells suggest that <i>PRKAB2</i> loss-of-function may influence <i>CHD1L</i> expression, and genes regulating cytokine activity, growth factor signaling, and pluripotency pathways associated with HIV infection. These results suggest that gene expression changes driven by HIV set-point viral load associated variants in the chromosome 1 impact multiple genes and, by influencing expression of <i>PRKAB2</i>, may result in altered expression of critical immune signaling processes. These findings advance our understanding of the contribution of host genetics on HIV pathogenesis and identifies new targets for <i>ex vivo</i> functional studies.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1551171"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1551171","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
A previous study investigated a genomic region on chromosome 1 associated with reduced human immunodeficiency virus type 1 (HIV) set-point viral load, implicating CHD1L as a novel HIV inhibitory factor. However, given that regulatory variants can influence expression of multiple nearby genes, further work is necessary to determine the impact of genetic variants on other genes in the region. This study evaluates the potential for genetic regulation of PRKAB2, a gene located upstream of CHD1L and encoding the β2 regulatory subunit of the AMPK complex, and for downstream impacts on HIV pathogenesis. Using genotype and gene expression data from the Gene Expression Omnibus repository and Genotype-Tissue Expression database, we observed cell-type-specific correlations between CHD1L and PRKAB2 expression, with a strong positive association in whole blood and negative correlation in monocytes. Notably, we found that individuals with HIV set-point viral load associated variants exhibited significantly reduced PRKAB2 expression in imputed whole blood models and ex vivo monocytes. Functional analyses using PRKAB2-/- induced pluripotent stem cells suggest that PRKAB2 loss-of-function may influence CHD1L expression, and genes regulating cytokine activity, growth factor signaling, and pluripotency pathways associated with HIV infection. These results suggest that gene expression changes driven by HIV set-point viral load associated variants in the chromosome 1 impact multiple genes and, by influencing expression of PRKAB2, may result in altered expression of critical immune signaling processes. These findings advance our understanding of the contribution of host genetics on HIV pathogenesis and identifies new targets for ex vivo functional studies.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.