Quantification of Lung Stiffness Using Magnetic Resonance Elastography (MRE): Clinical Validation for Smokers.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Sabine F Bensamoun, Kiaran P McGee, Mashhour Chakouch, Philippe Pouletaut, Fabrice Charleux
{"title":"Quantification of Lung Stiffness Using Magnetic Resonance Elastography (MRE): Clinical Validation for Smokers.","authors":"Sabine F Bensamoun, Kiaran P McGee, Mashhour Chakouch, Philippe Pouletaut, Fabrice Charleux","doi":"10.1109/TBME.2025.3553375","DOIUrl":null,"url":null,"abstract":"<p><p>: Tobacco-related pathologies are the most preventable diseases. The purpose is to provide personalized cartography of smoker lung stiffness using non-irradiating imaging modalities, MRI and MRE (magnetic resonance imaging/elastography).</p><p><strong>Methods: </strong>Thirty-four smokers were divided into five groups distributed with a range of pack-years (PY) of 10. All patients underwent three imaging tests (CT: computed tomography, MRI, MRE) to make possible measurements of lung density, with two modalities (CT, MR), and stiffness. CT lung density was measured using the Hounsfield number. MR density was obtained from a fast gradient echo sequence and validated with an in vitro 3D abdominal phantom. The MRE test was performed with a motion-encoding gradient (Z direction), a spin-echo echo-planar sequence and four offsets. A pneumatic driver (frequency: 50 Hz) was placed on the right lung and four axial phase images were recorded. Post-processing was then performed to record a personalized stiffness cartography.</p><p><strong>Results: </strong>CT density significantly increased in relation to PY, showing denser tissue for the heavy smokers. As MR density acquisition is less accurate than CT, a slight increase in lung density was obtained. MRE tests revealed a significant increase in stiffness with pack-year. Patient-specific lung stiffness showed inhomogeneous distribution of values.</p><p><strong>Conclusion: </strong>MRE could provide a personalized cartography of stiffness for regular uptake of the lung's mechanical behavior in smokers. The stiffness could become a biomarker for preventing future lung disease.</p><p><strong>Significance: </strong>MRE test could be an alternative to CT test for the follow-up of smokers.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3553375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

: Tobacco-related pathologies are the most preventable diseases. The purpose is to provide personalized cartography of smoker lung stiffness using non-irradiating imaging modalities, MRI and MRE (magnetic resonance imaging/elastography).

Methods: Thirty-four smokers were divided into five groups distributed with a range of pack-years (PY) of 10. All patients underwent three imaging tests (CT: computed tomography, MRI, MRE) to make possible measurements of lung density, with two modalities (CT, MR), and stiffness. CT lung density was measured using the Hounsfield number. MR density was obtained from a fast gradient echo sequence and validated with an in vitro 3D abdominal phantom. The MRE test was performed with a motion-encoding gradient (Z direction), a spin-echo echo-planar sequence and four offsets. A pneumatic driver (frequency: 50 Hz) was placed on the right lung and four axial phase images were recorded. Post-processing was then performed to record a personalized stiffness cartography.

Results: CT density significantly increased in relation to PY, showing denser tissue for the heavy smokers. As MR density acquisition is less accurate than CT, a slight increase in lung density was obtained. MRE tests revealed a significant increase in stiffness with pack-year. Patient-specific lung stiffness showed inhomogeneous distribution of values.

Conclusion: MRE could provide a personalized cartography of stiffness for regular uptake of the lung's mechanical behavior in smokers. The stiffness could become a biomarker for preventing future lung disease.

Significance: MRE test could be an alternative to CT test for the follow-up of smokers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信