Tanycyte proliferation and migration through the sonic hedgehog pathway restores hypothalamic function after ischemic injury.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhiwei Xiong, Yichao Ou, Rongjun Chen, Mingfeng Zhou, Zijing Wang, Guangsen Wu, Mengjie Che, Kai Li, Haodong Gong, Yihan Wang, Xufan Ling, Hai Wang, Xingqin Wang, Qiancheng Song, Songtao Qi, Zhanpeng Feng, Junxiang Peng
{"title":"Tanycyte proliferation and migration through the sonic hedgehog pathway restores hypothalamic function after ischemic injury.","authors":"Zhiwei Xiong, Yichao Ou, Rongjun Chen, Mingfeng Zhou, Zijing Wang, Guangsen Wu, Mengjie Che, Kai Li, Haodong Gong, Yihan Wang, Xufan Ling, Hai Wang, Xingqin Wang, Qiancheng Song, Songtao Qi, Zhanpeng Feng, Junxiang Peng","doi":"10.1016/j.freeradbiomed.2025.03.026","DOIUrl":null,"url":null,"abstract":"<p><p>Tanycytes, a distinct type of glial cell within the hypothalamus, will be investigated in this study to elucidate the intrinsic mechanisms by which they facilitate the restoration of hypothalamic function. We injected endothelin 1 (ET-1) into the third ventricle to establish an ischemic hypothalamic injury model. Nestin CreER<sup>T2</sup> and Rosa26R-CAG:tdTomato mice were crossbred, and viral tracing was used to label and track tanycytes. Functional changes in these cells were observed with calcium imaging. Alterations in tanycytes were assessed with single-cell and transcriptomic sequencing analyses. The involvement of specific pathways was confirmed via intraperitoneal injection of N-acetyl cysteine (NAC) and cycloheximide. Following ischemic injury to the hypothalamus in mice, acute weight loss and impaired activity of Agrp neurons were observed, both of which recovered within 7 days. The fate of tanycytes was traced in Nestin-CreER<sup>T2</sup>: Rosa26R-CAG:Tdtomato mice to confirm their proliferation and migration after hypothalamic injury. Calcium imaging indicated that these proliferating and migrating cells participated in signal transduction, thereby reconstructing the regulatory network of tanycytes. The analysis of single-cell data on postnatal days 8 and 45 identified CDK1 as a marker of proliferative tanycytes. The roles of ROS and the Shh pathway in the proliferation and migration of tanycytes were validated via the intraperitoneal injection of NAC and cycloheximide inhibitors. After inducing ischemic injury to the arcuate nucleus of the hypothalamus, Agrp neuronal activity declined, accompanied by ROS fluctuations within tanycytes. Activation of the Shh pathway prompts the transition of tanycytes from a quiescent state to a proliferative state, thereby leading to their migration to the arcuate nucleus. This process re-establishes the regulatory network of tanycytes and restores metabolic balance. This finding may provide an important target for promoting the recovery of hypothalamic function.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.03.026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tanycytes, a distinct type of glial cell within the hypothalamus, will be investigated in this study to elucidate the intrinsic mechanisms by which they facilitate the restoration of hypothalamic function. We injected endothelin 1 (ET-1) into the third ventricle to establish an ischemic hypothalamic injury model. Nestin CreERT2 and Rosa26R-CAG:tdTomato mice were crossbred, and viral tracing was used to label and track tanycytes. Functional changes in these cells were observed with calcium imaging. Alterations in tanycytes were assessed with single-cell and transcriptomic sequencing analyses. The involvement of specific pathways was confirmed via intraperitoneal injection of N-acetyl cysteine (NAC) and cycloheximide. Following ischemic injury to the hypothalamus in mice, acute weight loss and impaired activity of Agrp neurons were observed, both of which recovered within 7 days. The fate of tanycytes was traced in Nestin-CreERT2: Rosa26R-CAG:Tdtomato mice to confirm their proliferation and migration after hypothalamic injury. Calcium imaging indicated that these proliferating and migrating cells participated in signal transduction, thereby reconstructing the regulatory network of tanycytes. The analysis of single-cell data on postnatal days 8 and 45 identified CDK1 as a marker of proliferative tanycytes. The roles of ROS and the Shh pathway in the proliferation and migration of tanycytes were validated via the intraperitoneal injection of NAC and cycloheximide inhibitors. After inducing ischemic injury to the arcuate nucleus of the hypothalamus, Agrp neuronal activity declined, accompanied by ROS fluctuations within tanycytes. Activation of the Shh pathway prompts the transition of tanycytes from a quiescent state to a proliferative state, thereby leading to their migration to the arcuate nucleus. This process re-establishes the regulatory network of tanycytes and restores metabolic balance. This finding may provide an important target for promoting the recovery of hypothalamic function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信