{"title":"miR-125b-5p regulates FFA-induced hepatic steatosis in L02 cells by targeting estrogen-related receptor alpha","authors":"Fen Gao , Yanhua Ma , Chun Yu , Qianchen Duan","doi":"10.1016/j.gene.2025.149419","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & Aims</h3><div>NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA.</div></div><div><h3>Approaches and results</h3><div>Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS and determine triglyceride content within the cells per group. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1, FAS and triglyceride content. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1, FAS and triglyceride content rebounded.</div></div><div><h3>Conclusions</h3><div>MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"959 ","pages":"Article 149419"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925002070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims
NAFLD is a global and complex liver disease caused by multiple factors. Intrahepatocellular steatosis is the primary prerequisite for the occurrence and development of NAFLD. It has been shown that miR-125b-5p is highly correlated with NAFLD, and ESRRA is a factor that regulates lipid metabolism. The purpose of our study is to investigate whether miR-125b-5p regulates FFA-induced steatosis in L02 cells by targeting ESRRA.
Approaches and results
Estrogen-related receptor alpha (ESRRA) was identified as a direct target of miR-125b-5p through database prediction and a dual-luciferase reporter gene assay. L02 cells were induced with free fatty acids (OA:PA, 2:1) at concentrations of 0.3 mM, 0.6 mM, 0.9 mM, 1.2 mM and 1.5 mM for 24 h, 48 h and 72 h, respectively. The degree of hepatocyte steatosis and triglyceride content were separately manifested by oil red O staining and colorimetric method. Cell viability per group was detected by CCK-8 assay. Eventually, 0.9 mM and 24 h were screened out as the optimal concentration and time for establishing the in-vitro model of hepatic steatosis. Followingly, miR-125b-5p and ESRRA were knocked down by transient transfection. We monitored the expressions of lipid metabolism factors SREBP-1c, ACC1 and FAS and determine triglyceride content within the cells per group. The data showed that knockdown of ESRRA led to down-regulation of the expressions of SREBP-1, ACC1, FAS and triglyceride content. Meanwhile, knockdown of ESRRA and miR-125b-5p resulted that the expressions of ESRRA, SREBP-1, ACC1, FAS and triglyceride content rebounded.
Conclusions
MiR-125b-5p down-regulates the expressions of lipid metabolism-related factors by negatively regulating ESRRA, thereby improving hepatic steatosis.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.