{"title":"Structural Insights into Lipoate Ligase A-Mediated Antibody Modifications.","authors":"Kazutoshi Takahashi, Shunsuke Yamazaki, Yutaka Matsuda","doi":"10.1021/acs.biochem.5c00040","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme-mediated site-specific protein modification is gaining attention in biopharmaceuticals due to its high specificity and mild conditions. Lipoic acid ligase A (LplA) has been widely studied for conjugating short-chain fatty acids to lysine residues, traditionally using LAP tags. Recent advances have enabled tag-free LplA modifications, expanding applications in antibody-drug conjugates (ADCs) and beyond. This study investigates the selective modification of Lys188 in trastuzumab by LplA. Spatial analysis and molecular modeling suggest that D151 and H189 facilitate nucleophilic attack and stabilize intermediates via electrostatic and π-cation interactions. These insights enhance our understanding of enzyme-driven site selectivity, guiding the rational design of antibody modifications. The findings support broader applications in ADC production, diagnostics, and next-generation biopharmaceuticals, emphasizing the role of local amino acid environments in enzymatic modifications.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2577-2582"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme-mediated site-specific protein modification is gaining attention in biopharmaceuticals due to its high specificity and mild conditions. Lipoic acid ligase A (LplA) has been widely studied for conjugating short-chain fatty acids to lysine residues, traditionally using LAP tags. Recent advances have enabled tag-free LplA modifications, expanding applications in antibody-drug conjugates (ADCs) and beyond. This study investigates the selective modification of Lys188 in trastuzumab by LplA. Spatial analysis and molecular modeling suggest that D151 and H189 facilitate nucleophilic attack and stabilize intermediates via electrostatic and π-cation interactions. These insights enhance our understanding of enzyme-driven site selectivity, guiding the rational design of antibody modifications. The findings support broader applications in ADC production, diagnostics, and next-generation biopharmaceuticals, emphasizing the role of local amino acid environments in enzymatic modifications.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.