Leveraging-Induced Polarization for Drug Discovery: Efficient IC50 Prediction Using Minimal Features.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ashraf Mohamed, Bernard R Brooks, Muhamed Amin
{"title":"Leveraging-Induced Polarization for Drug Discovery: Efficient IC50 Prediction Using Minimal Features.","authors":"Ashraf Mohamed, Bernard R Brooks, Muhamed Amin","doi":"10.1021/acs.jcim.5c00076","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we use the frequency of the atomic hybridizations (s, sp, sp<sup>2</sup>, and sp<sup>3</sup>) of each atom type (H, C, N, O, S, etc.) within a molecule to predict the IC50s of drug-like molecules, focusing on compounds targeting the Thrombin, Estrogen Receptor alpha, and Phosphodiesterase 5A proteins. The Neural Network and Random Forest models yield high correlation coefficients (<i>R</i><sup>2</sup>) and low mean square error (MSE) using only 19 features. The atomic hybridizations have been used previously to calculate the molecular polarizability using a simple empirical model (Miller et al. <i>JACS</i> <b>1979</b>). We show that the atomic hybridizations may also be used to accurately predict the molecular polarizabilities of these molecules. The results show the importance of the induced polarization in protein-ligand binding. Furthermore, the variation in <i>R</i><sup>2</sup> and MSE for the different target proteins indicates that the contribution of the induced polarization to the binding energies is different for different target proteins.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00076","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we use the frequency of the atomic hybridizations (s, sp, sp2, and sp3) of each atom type (H, C, N, O, S, etc.) within a molecule to predict the IC50s of drug-like molecules, focusing on compounds targeting the Thrombin, Estrogen Receptor alpha, and Phosphodiesterase 5A proteins. The Neural Network and Random Forest models yield high correlation coefficients (R2) and low mean square error (MSE) using only 19 features. The atomic hybridizations have been used previously to calculate the molecular polarizability using a simple empirical model (Miller et al. JACS 1979). We show that the atomic hybridizations may also be used to accurately predict the molecular polarizabilities of these molecules. The results show the importance of the induced polarization in protein-ligand binding. Furthermore, the variation in R2 and MSE for the different target proteins indicates that the contribution of the induced polarization to the binding energies is different for different target proteins.

在这里,我们利用分子中每种原子类型(H、C、N、O、S 等)的原子杂化(s、sp、sp2 和 sp3)频率来预测类药物分子的 IC50,重点是针对凝血酶、雌激素受体 alpha 和磷酸二酯酶 5A 蛋白的化合物。神经网络和随机森林模型仅使用 19 个特征就能产生较高的相关系数(R2)和较低的均方误差(MSE)。原子杂交以前曾被用于使用简单的经验模型计算分子极化率(Miller 等,JACS 1979)。我们的研究表明,原子杂化也可用于准确预测这些分子的分子极化率。结果表明了诱导极化在蛋白质配体结合中的重要性。此外,不同目标蛋白质的 R2 和 MSE 的变化表明,不同目标蛋白质的诱导极化对结合能的贡献是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信