Advanced geospatial modeling and assessment of land degradation severity zones in India’s semi-arid regions

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Pradeep Kumar Badapalli, Anusha Boya Nakkala, Padma Sree Pujari, Sakram Gugulothu, Mamatha Ullengula, Shanthosh Senthamizhselvan
{"title":"Advanced geospatial modeling and assessment of land degradation severity zones in India’s semi-arid regions","authors":"Pradeep Kumar Badapalli,&nbsp;Anusha Boya Nakkala,&nbsp;Padma Sree Pujari,&nbsp;Sakram Gugulothu,&nbsp;Mamatha Ullengula,&nbsp;Shanthosh Senthamizhselvan","doi":"10.1007/s10661-025-13875-0","DOIUrl":null,"url":null,"abstract":"<div><p>Land degradation poses significant challenges to sustainable development, particularly in semi-arid regions where ecosystems are highly vulnerable. This study employs a cutting-edge geospatial and multi-criteria decision-making (MCDM) approach to delineate land degradation severity zones (LDSZs) in Anantapur district, India—a region characterized by persistent environmental stress. Utilizing thematic layers such as geology, geomorphology, soil properties, slope, and remote sensing indices (NDVI, MNDWI, NDSI, and LST), the study integrates high-resolution Landsat 8 OLI/TIRS (2023) and DEM datasets with local meteorological data for precise spatial analysis. The LDSZ classification identified critical degradation patterns, with river/stream/waterbody areas occupying 3.06% of the landscape and varying severity zones covering the remaining areas: very low (4.58%), low (20.56%), moderate (31.09%), high (27.62%), and very high (13.08%). Validation using the receiver operating characteristic (ROC) curve resulted in an area under the curve (AUC) value of 0.825, demonstrating the model’s reliability. By synthesizing geospatial data and MCDM, this research offers a dynamic framework for mapping and quantifying land degradation. It underscores the pressing need for context-specific land management practices to mitigate severe degradation while paving the way for broader applications in other semi-arid regions. This approach represents a significant leap in assessing and addressing land degradation, providing a robust scientific basis for future interventions and policy development.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13875-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13875-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Land degradation poses significant challenges to sustainable development, particularly in semi-arid regions where ecosystems are highly vulnerable. This study employs a cutting-edge geospatial and multi-criteria decision-making (MCDM) approach to delineate land degradation severity zones (LDSZs) in Anantapur district, India—a region characterized by persistent environmental stress. Utilizing thematic layers such as geology, geomorphology, soil properties, slope, and remote sensing indices (NDVI, MNDWI, NDSI, and LST), the study integrates high-resolution Landsat 8 OLI/TIRS (2023) and DEM datasets with local meteorological data for precise spatial analysis. The LDSZ classification identified critical degradation patterns, with river/stream/waterbody areas occupying 3.06% of the landscape and varying severity zones covering the remaining areas: very low (4.58%), low (20.56%), moderate (31.09%), high (27.62%), and very high (13.08%). Validation using the receiver operating characteristic (ROC) curve resulted in an area under the curve (AUC) value of 0.825, demonstrating the model’s reliability. By synthesizing geospatial data and MCDM, this research offers a dynamic framework for mapping and quantifying land degradation. It underscores the pressing need for context-specific land management practices to mitigate severe degradation while paving the way for broader applications in other semi-arid regions. This approach represents a significant leap in assessing and addressing land degradation, providing a robust scientific basis for future interventions and policy development.

印度半干旱地区土地退化严重程度区的高级地理空间建模与评估
土地退化对可持续发展构成重大挑战,尤其是在生态系统非常脆弱的半干旱地区。本研究采用先进的地理空间和多标准决策(MCDM)方法,在印度阿南塔普尔地区--一个环境压力持续存在的地区--划定土地退化严重程度区(LDSZ)。该研究利用地质、地貌、土壤特性、坡度和遥感指数(NDVI、MNDWI、NDSI 和 LST)等专题图层,将高分辨率 Landsat 8 OLI/TIRS (2023) 和 DEM 数据集与当地气象数据相结合,进行精确的空间分析。LDSZ 分类确定了关键的退化模式,其中河流/溪流/水体区域占地貌的 3.06%,其余区域为不同的严重程度区:极低(4.58%)、低(20.56%)、中等(31.09%)、高(27.62%)和极高(13.08%)。使用接收者操作特征曲线(ROC)进行验证后,曲线下面积(AUC)值为 0.825,证明了模型的可靠性。通过综合利用地理空间数据和 MCDM,这项研究为绘制和量化土地退化提供了一个动态框架。它强调了根据具体情况采取土地管理措施以缓解严重退化的迫切需要,同时也为在其他半干旱地区的广泛应用铺平了道路。这种方法是评估和解决土地退化问题的重大飞跃,为未来的干预措施和政策制定提供了坚实的科学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信