From balance to breach: cyber threats to battery energy storage systems

Q2 Energy
Frans Öhrström, Joakim Oscarsson, Zeeshan Afzal, János Dani, Mikael Asplund
{"title":"From balance to breach: cyber threats to battery energy storage systems","authors":"Frans Öhrström,&nbsp;Joakim Oscarsson,&nbsp;Zeeshan Afzal,&nbsp;János Dani,&nbsp;Mikael Asplund","doi":"10.1186/s42162-025-00499-4","DOIUrl":null,"url":null,"abstract":"<div><p>Battery energy storage systems are an important part of modern power systems as a solution to maintain grid balance. However, such systems are often remotely managed using cloud-based control systems. This exposes them to cyberattacks that could result in catastrophic consequences for the electrical grid and the connected infrastructure. This paper takes a step towards advancing understanding of these systems and investigates the effects of cyberattacks targeting them. We propose a reference model for an electrical grid cloud-controlled load-balancing system connected to remote battery energy storage systems. The reference model is evaluated from a cybersecurity perspective by implementing and simulating various cyberattacks. The results reveal the system’s attack surface and demonstrate the impact of cyberattacks that can critically threaten the security and stability of the electrical grid.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00499-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00499-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Battery energy storage systems are an important part of modern power systems as a solution to maintain grid balance. However, such systems are often remotely managed using cloud-based control systems. This exposes them to cyberattacks that could result in catastrophic consequences for the electrical grid and the connected infrastructure. This paper takes a step towards advancing understanding of these systems and investigates the effects of cyberattacks targeting them. We propose a reference model for an electrical grid cloud-controlled load-balancing system connected to remote battery energy storage systems. The reference model is evaluated from a cybersecurity perspective by implementing and simulating various cyberattacks. The results reveal the system’s attack surface and demonstrate the impact of cyberattacks that can critically threaten the security and stability of the electrical grid.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信