Calibrating for the Future: Enhancing Calorimeter Longevity with Deep Learning

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
S. Ali, A. S. Ryzhikov, D. A. Derkach, F. D. Ratnikov, V. O. Bocharnikov
{"title":"Calibrating for the Future: Enhancing Calorimeter Longevity with Deep Learning","authors":"S. Ali,&nbsp;A. S. Ryzhikov,&nbsp;D. A. Derkach,&nbsp;F. D. Ratnikov,&nbsp;V. O. Bocharnikov","doi":"10.3103/S0027134924702047","DOIUrl":null,"url":null,"abstract":"<p>In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misalignment in calorimeter data due to aging or other factors. Leveraging the Wasserstein distance for loss calculation, this innovative approach requires a significantly lower number of events and resources to achieve high precision, minimizing absolute errors effectively. Our work extends the operational lifespan of calorimeters, thereby ensuring the accuracy and reliability of data in the long term, and is particularly beneficial for experiments where data integrity is crucial for scientific discovery.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S591 - S597"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misalignment in calorimeter data due to aging or other factors. Leveraging the Wasserstein distance for loss calculation, this innovative approach requires a significantly lower number of events and resources to achieve high precision, minimizing absolute errors effectively. Our work extends the operational lifespan of calorimeters, thereby ensuring the accuracy and reliability of data in the long term, and is particularly beneficial for experiments where data integrity is crucial for scientific discovery.

Abstract Image

为未来校准:利用深度学习提高量热计寿命
在高能物理领域,热量计的使用寿命至关重要。我们的研究引入了一种深度学习策略,以完善粒子物理实验中使用的热量计的校准过程。我们开发了一种受 Wasserstein GAN启发的方法,它能很好地校准因老化或其他因素造成的热量计数据失准。利用瓦瑟斯坦距离进行损耗计算,这种创新方法只需较少的事件和资源即可实现高精度,从而有效地将绝对误差降至最低。我们的工作延长了量热计的运行寿命,从而确保了数据的长期准确性和可靠性,对于数据完整性对科学发现至关重要的实验尤其有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信