S. Ali, A. S. Ryzhikov, D. A. Derkach, F. D. Ratnikov, V. O. Bocharnikov
{"title":"Calibrating for the Future: Enhancing Calorimeter Longevity with Deep Learning","authors":"S. Ali, A. S. Ryzhikov, D. A. Derkach, F. D. Ratnikov, V. O. Bocharnikov","doi":"10.3103/S0027134924702047","DOIUrl":null,"url":null,"abstract":"<p>In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misalignment in calorimeter data due to aging or other factors. Leveraging the Wasserstein distance for loss calculation, this innovative approach requires a significantly lower number of events and resources to achieve high precision, minimizing absolute errors effectively. Our work extends the operational lifespan of calorimeters, thereby ensuring the accuracy and reliability of data in the long term, and is particularly beneficial for experiments where data integrity is crucial for scientific discovery.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S591 - S597"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of high-energy physics, the longevity of calorimeters is paramount. Our research introduces a deep learning strategy to refine the calibration process of calorimeters used in particle physics experiments. We develop a Wasserstein GAN inspired methodology that adeptly calibrates the misalignment in calorimeter data due to aging or other factors. Leveraging the Wasserstein distance for loss calculation, this innovative approach requires a significantly lower number of events and resources to achieve high precision, minimizing absolute errors effectively. Our work extends the operational lifespan of calorimeters, thereby ensuring the accuracy and reliability of data in the long term, and is particularly beneficial for experiments where data integrity is crucial for scientific discovery.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.