Application of Kolmogorov–Arnold Networks in High Energy Physics

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
E. E. Abasov, P. V. Volkov, G. A. Vorotnikov, L. V. Dudko, A. D. Zaborenko, E. S. Iudin, A. A. Markina, M. A. Perfilov
{"title":"Application of Kolmogorov–Arnold Networks in High Energy Physics","authors":"E. E. Abasov,&nbsp;P. V. Volkov,&nbsp;G. A. Vorotnikov,&nbsp;L. V. Dudko,&nbsp;A. D. Zaborenko,&nbsp;E. S. Iudin,&nbsp;A. A. Markina,&nbsp;M. A. Perfilov","doi":"10.3103/S0027134924702035","DOIUrl":null,"url":null,"abstract":"<p>Kolmogorov–Arnold Networks represent a recent advancement in machine learning, with the potential to outperform traditional perceptron-based neural networks across various domains as well as provide more interpretability with the use of symbolic formulas and pruning. This study explores the application of KANs to specific tasks in high-energy physics. We evaluate the performance of KANs in distinguishing multijet processes in proton–proton collisions and in reconstructing missing transverse momentum in events involving dark matter.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S585 - S590"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Kolmogorov–Arnold Networks represent a recent advancement in machine learning, with the potential to outperform traditional perceptron-based neural networks across various domains as well as provide more interpretability with the use of symbolic formulas and pruning. This study explores the application of KANs to specific tasks in high-energy physics. We evaluate the performance of KANs in distinguishing multijet processes in proton–proton collisions and in reconstructing missing transverse momentum in events involving dark matter.

Abstract Image

柯尔莫哥洛夫-阿诺德网络是机器学习领域的最新进展,它有可能在各个领域超越基于感知器的传统神经网络,并通过使用符号公式和剪枝提供更多的可解释性。本研究探讨了 KAN 在高能物理特定任务中的应用。我们评估了 KAN 在区分质子-质子碰撞中的多喷流过程和重建暗物质事件中缺失的横动量方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信