Machine Learning for FARICH Reconstruction at NICA SPD

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
F. Shipilov, A. Barnyakov, A. Ivanov, F. Ratnikov
{"title":"Machine Learning for FARICH Reconstruction at NICA SPD","authors":"F. Shipilov,&nbsp;A. Barnyakov,&nbsp;A. Ivanov,&nbsp;F. Ratnikov","doi":"10.3103/S0027134924702369","DOIUrl":null,"url":null,"abstract":"<p>In the end-cap region of the SPD detector complex, particle identification will be provided by a Focusing Aerogel RICH detector (FARICH). FARICH’s primary function is to separate pions and kaons in final open charmonia states (momenta below 5 GeV/<span>\\(c\\)</span>). The optimization of detector parameters, as well as a free-running (triggerless) data acquisition pipeline to be employed in the SPD necessitate a fast and robust method of event reconstruction. In this work, we employ a Convolutional Neural Network (CNN) for particle identification in FARICH. The CNN model achieves a superior separation between pions and kaons compared with traditional approaches. Unlike algorithmic methods, an end-to-end CNN model is able to process a full 2-dimensional detector response and skip the intermediate step of computing particle velocity, solving the particle classification task directly.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S906 - S913"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702369","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the end-cap region of the SPD detector complex, particle identification will be provided by a Focusing Aerogel RICH detector (FARICH). FARICH’s primary function is to separate pions and kaons in final open charmonia states (momenta below 5 GeV/\(c\)). The optimization of detector parameters, as well as a free-running (triggerless) data acquisition pipeline to be employed in the SPD necessitate a fast and robust method of event reconstruction. In this work, we employ a Convolutional Neural Network (CNN) for particle identification in FARICH. The CNN model achieves a superior separation between pions and kaons compared with traditional approaches. Unlike algorithmic methods, an end-to-end CNN model is able to process a full 2-dimensional detector response and skip the intermediate step of computing particle velocity, solving the particle classification task directly.

Abstract Image

在 SPD 探测器复合体的端盖区域,粒子识别将由聚焦气凝胶 RICH 探测器(FARICH)提供。FARICH 的主要功能是分离处于最终开放 charmonia 状态(时刻低于 5 GeV/\(c\))的 pions 和 kaons。探测器参数的优化,以及将在 SPD 中使用的自由运行(无触发)数据采集管道,都需要一种快速而稳健的事件重构方法。在这项工作中,我们采用了卷积神经网络(CNN)来识别 FARICH 中的粒子。与传统方法相比,卷积神经网络模型能更好地分离粒子和高子。与算法方法不同,端到端 CNN 模型能够处理完整的二维探测器响应,并跳过计算粒子速度的中间步骤,直接解决粒子分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信