Yu. Yu. Dubenskaya, A. P. Kryukov, E. O. Gres, S. P. Polyakov, E. B. Postnikov, P. A. Volchugov, A. A. Vlaskina, D. P. Zhurov
{"title":"Image Data Augmentation for the TAIGA-IACT Experiment with Conditional Generative Adversarial Networks","authors":"Yu. Yu. Dubenskaya, A. P. Kryukov, E. O. Gres, S. P. Polyakov, E. B. Postnikov, P. A. Volchugov, A. A. Vlaskina, D. P. Zhurov","doi":"10.3103/S0027134924702059","DOIUrl":null,"url":null,"abstract":"<p>Modern Imaging Atmospheric Cherenkov Telescopes (IACTs) generate a huge amount of data that must be classified automatically, ideally in real time. Currently, machine learning-based solutions are increasingly being used to solve classification problems. However, these classifiers require proper training data sets to work correctly. The problem with training neural networks on real IACT data is that these data need to be prelabeled, whereas such labeling is difficult and its results are estimates. In addition, the distribution of incoming events is highly imbalanced. Firstly, there is an imbalance in the types of events, since the number of detected gamma quanta is significantly less than the number of protons. Secondly, the energy distribution of particles of the same type is also imbalanced, since high-energy particles are extremely rare. This imbalance results in poorly trained classifiers that, once trained, do not handle rare events correctly. Using only conventional Monte Carlo event simulation methods to solve this problem is possible, but extremely resource-intensive and time-consuming. To address this issue, we propose to perform data augmentation with artificially generated events of the desired type and energy using conditional generative adversarial networks (cGANs), distinguishing classes by energy values. In the paper, we describe a simple algorithm for generating balanced data sets using cGANs. Thus, the proposed neural network model produces both imbalanced data sets for physical analysis as well as balanced data sets suitable for training other neural networks.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S598 - S607"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern Imaging Atmospheric Cherenkov Telescopes (IACTs) generate a huge amount of data that must be classified automatically, ideally in real time. Currently, machine learning-based solutions are increasingly being used to solve classification problems. However, these classifiers require proper training data sets to work correctly. The problem with training neural networks on real IACT data is that these data need to be prelabeled, whereas such labeling is difficult and its results are estimates. In addition, the distribution of incoming events is highly imbalanced. Firstly, there is an imbalance in the types of events, since the number of detected gamma quanta is significantly less than the number of protons. Secondly, the energy distribution of particles of the same type is also imbalanced, since high-energy particles are extremely rare. This imbalance results in poorly trained classifiers that, once trained, do not handle rare events correctly. Using only conventional Monte Carlo event simulation methods to solve this problem is possible, but extremely resource-intensive and time-consuming. To address this issue, we propose to perform data augmentation with artificially generated events of the desired type and energy using conditional generative adversarial networks (cGANs), distinguishing classes by energy values. In the paper, we describe a simple algorithm for generating balanced data sets using cGANs. Thus, the proposed neural network model produces both imbalanced data sets for physical analysis as well as balanced data sets suitable for training other neural networks.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.