Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Mitia Duerinckx, Lucas Ertzbischoff, Alexandre Girodroux-Lavigne, Richard M. Höfer
{"title":"Hydrodynamic Limit of Multiscale Viscoelastic Models for Rigid Particle Suspensions","authors":"Mitia Duerinckx,&nbsp;Lucas Ertzbischoff,&nbsp;Alexandre Girodroux-Lavigne,&nbsp;Richard M. Höfer","doi":"10.1007/s00205-025-02092-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the multiscale viscoelastic Doi model for suspensions of Brownian rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-propelled particles. We consider the regime of a small Weissenberg number, which corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and we analyze the resulting hydrodynamic approximation. More precisely, we show the asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called ordered fluid models, as an expansion in the Weissenberg number. The result holds for zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way, we establish several new well-posedness and regularity results for nonlinear fluid models, which may be of independent interest.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02092-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multiscale viscoelastic Doi model for suspensions of Brownian rigid rod-like particles, as well as its generalization by Saintillan and Shelley for self-propelled particles. We consider the regime of a small Weissenberg number, which corresponds to a fast rotational diffusion compared to the fluid velocity gradient, and we analyze the resulting hydrodynamic approximation. More precisely, we show the asymptotic validity of macroscopic nonlinear viscoelastic models, in form of so-called ordered fluid models, as an expansion in the Weissenberg number. The result holds for zero Reynolds number in 3D and for arbitrary Reynolds number in 2D. Along the way, we establish several new well-posedness and regularity results for nonlinear fluid models, which may be of independent interest.

刚性颗粒悬浮液多尺度粘弹性模型的水动力极限
我们研究了布朗刚性棒状颗粒悬浮物的多尺度粘弹性Doi模型,以及Saintillan和Shelley对自推进颗粒的推广。我们考虑一个小的Weissenberg数,它对应于一个快速的旋转扩散与流体速度梯度,我们分析了由此产生的流体动力学近似。更准确地说,我们展示了宏观非线性粘弹性模型的渐近有效性,以所谓的有序流体模型的形式,作为Weissenberg数的展开。该结果适用于三维的零雷诺数和二维的任意雷诺数。在此过程中,我们建立了几个新的非线性流体模型的适定性和正则性结果,这些结果可能具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信