Customized Mean Field Game Method of Virtual Power Plant for Real-Time Peak Regulation

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Kuan Zhang;Yawen Xie;Nian Liu;Siqi Chen
{"title":"Customized Mean Field Game Method of Virtual Power Plant for Real-Time Peak Regulation","authors":"Kuan Zhang;Yawen Xie;Nian Liu;Siqi Chen","doi":"10.1109/TSTE.2025.3533929","DOIUrl":null,"url":null,"abstract":"This paper proposes a customized incentive compatible mean field game (MFG) method for virtual power plant (VPP) with a large number of self-interest heterogeneous distributed energy resources (DERs) to participate in the real-time peak regulation. Firstly, an optimal chance-constrained peak-regulation bidding model of VPP considering the stochastic power flexibility is formulated, where inscribed pyramid approximation method is utilized to form a compact and concise dispatch region. Secondly, a customized MFG method with dynamic granulation division is proposed for encouraging very large-scale DERs to spontaneously respond to the peak regulation instructions from VPP while achieving dynamic allocation of peak-regulation revenue. Brouwer fixed-point theorem and contraction mapping theorem are used to prove the existence and uniqueness of the mean field equilibrium (MFE) of the formulated MFG, and ϵ-Nash property of MFE is validated based on the Lipschitz continuity condition. Furthermore, an accelerated decentralized solution algorithm is developed to rapidly search MFE, exhibiting good scalability. Comparative studies have validated the superiority of the proposed methodology on incentive compatibility and decomposition efficiency of the VPP's peak-regulation instructions.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1453-1466"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10854803/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a customized incentive compatible mean field game (MFG) method for virtual power plant (VPP) with a large number of self-interest heterogeneous distributed energy resources (DERs) to participate in the real-time peak regulation. Firstly, an optimal chance-constrained peak-regulation bidding model of VPP considering the stochastic power flexibility is formulated, where inscribed pyramid approximation method is utilized to form a compact and concise dispatch region. Secondly, a customized MFG method with dynamic granulation division is proposed for encouraging very large-scale DERs to spontaneously respond to the peak regulation instructions from VPP while achieving dynamic allocation of peak-regulation revenue. Brouwer fixed-point theorem and contraction mapping theorem are used to prove the existence and uniqueness of the mean field equilibrium (MFE) of the formulated MFG, and ϵ-Nash property of MFE is validated based on the Lipschitz continuity condition. Furthermore, an accelerated decentralized solution algorithm is developed to rapidly search MFE, exhibiting good scalability. Comparative studies have validated the superiority of the proposed methodology on incentive compatibility and decomposition efficiency of the VPP's peak-regulation instructions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信