Cooperative Strategies for Frequency Control of Wind Turbines to Mitigate Secondary Frequency Dip: Coefficient Allocation and Exit Techniques

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Zishuo Huang;Wenchuan Wu;Chenhui Lin;Zizhen Guo
{"title":"Cooperative Strategies for Frequency Control of Wind Turbines to Mitigate Secondary Frequency Dip: Coefficient Allocation and Exit Techniques","authors":"Zishuo Huang;Wenchuan Wu;Chenhui Lin;Zizhen Guo","doi":"10.1109/TSTE.2024.3498006","DOIUrl":null,"url":null,"abstract":"With the increasing integration of wind power into the power system, the incorporation of wind turbines into the grid's primary frequency regulation through inertia and droop control has been proven effective. However, a phenomenon known as secondary frequency dip (SFD) occurs when wind generators exit frequency regulation to restore the turbines’ speeds. This paper introduces a cooperative approach to mitigate SFD. Initially, a system frequency response model is established, incorporating the combined effects of synchronous generators and wind turbines. Subsequently, a model to forecast the rotational speed of each wind turbine in response to load changes is developed. Based on these models, the droop and inertia coefficients of different turbines in a wind farm are optimized to minimize overall wind energy loss during frequency regulation, thereby alleviating SFD, while ensuring the rotational speed remains within a safe range. Additionally, a smooth transition strategy based on a low-pass filter is proposed to prevent an abrupt decrease in active power as turbines exit frequency regulation. Finally, to prevent a simultaneous drop in active power among a large number of wind turbines, a sequential exit strategy from frequency regulation is proposed. Simulation results validate the effectiveness of the proposed methods in mitigating SFD.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1056-1067"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752840/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing integration of wind power into the power system, the incorporation of wind turbines into the grid's primary frequency regulation through inertia and droop control has been proven effective. However, a phenomenon known as secondary frequency dip (SFD) occurs when wind generators exit frequency regulation to restore the turbines’ speeds. This paper introduces a cooperative approach to mitigate SFD. Initially, a system frequency response model is established, incorporating the combined effects of synchronous generators and wind turbines. Subsequently, a model to forecast the rotational speed of each wind turbine in response to load changes is developed. Based on these models, the droop and inertia coefficients of different turbines in a wind farm are optimized to minimize overall wind energy loss during frequency regulation, thereby alleviating SFD, while ensuring the rotational speed remains within a safe range. Additionally, a smooth transition strategy based on a low-pass filter is proposed to prevent an abrupt decrease in active power as turbines exit frequency regulation. Finally, to prevent a simultaneous drop in active power among a large number of wind turbines, a sequential exit strategy from frequency regulation is proposed. Simulation results validate the effectiveness of the proposed methods in mitigating SFD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信