BKD-CL: Balanced Knowledge Distillation-Contrastive Learning for Distribution-Unknown Generalized Category Discovery in SAR ATR

Qianru Hou;Zhiwen Duan;Jianping Zong;Jianda Han;Hongpeng Wang
{"title":"BKD-CL: Balanced Knowledge Distillation-Contrastive Learning for Distribution-Unknown Generalized Category Discovery in SAR ATR","authors":"Qianru Hou;Zhiwen Duan;Jianping Zong;Jianda Han;Hongpeng Wang","doi":"10.1109/LGRS.2025.3548978","DOIUrl":null,"url":null,"abstract":"Open-environment machine learning is crucial for category discovery in synthetic aperture radar automatic target recognition (SAR ATR). However, SAR ATR toward intelligent applications requires addressing not only open-world distributions but also data imbalance. In this letter, we first propose the distribution-unknown generalized category discovery (DUGCD) problem and introduce the balanced knowledge distillation-contrastive learning (BKD-CL) framework, which includes the frequency attention ViT (FAViT) module and a multilayer perceptron (MLP) projection head. Second, we optimize the loss function using both supervised and self-supervised contrastive learning methods to learn feature representations from labeled and unlabeled data. We also implement self-distillation and entropy regularization to facilitate knowledge training for a parameterized classifier aimed at classification learning. Finally, to tackle the issue of data imbalance, we introduce balanced knowledge distillation, which selectively transfers knowledge using weighted coefficients to address the poor recognition performance caused by imbalanced data distributions. Extensive experiments conducted on the MSTAR dataset demonstrate the superiority of our proposed method.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916773/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open-environment machine learning is crucial for category discovery in synthetic aperture radar automatic target recognition (SAR ATR). However, SAR ATR toward intelligent applications requires addressing not only open-world distributions but also data imbalance. In this letter, we first propose the distribution-unknown generalized category discovery (DUGCD) problem and introduce the balanced knowledge distillation-contrastive learning (BKD-CL) framework, which includes the frequency attention ViT (FAViT) module and a multilayer perceptron (MLP) projection head. Second, we optimize the loss function using both supervised and self-supervised contrastive learning methods to learn feature representations from labeled and unlabeled data. We also implement self-distillation and entropy regularization to facilitate knowledge training for a parameterized classifier aimed at classification learning. Finally, to tackle the issue of data imbalance, we introduce balanced knowledge distillation, which selectively transfers knowledge using weighted coefficients to address the poor recognition performance caused by imbalanced data distributions. Extensive experiments conducted on the MSTAR dataset demonstrate the superiority of our proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信