Harmonics Current Sharing Strategy for Parallel Interfaced Multiple Solar PVs and BES Under Various Operating Conditions

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Abhishek Abhinav Nanda;Vivek Narayanan;Bhim Singh
{"title":"Harmonics Current Sharing Strategy for Parallel Interfaced Multiple Solar PVs and BES Under Various Operating Conditions","authors":"Abhishek Abhinav Nanda;Vivek Narayanan;Bhim Singh","doi":"10.1109/TSTE.2025.3531767","DOIUrl":null,"url":null,"abstract":"Oversizing voltage source converter (VSC) too much is a common consequence of conventional control methods used to maintain sinusoidal utility currents in a central battery energy storage (BES) and multiple solar photovoltaic (PV) arrays-based microgrids interfaced in parallel at the point of common coupling (PCC). It is done to meet harmonics demand of local loads, resulting in increased installation costs and reduced reliability of whole system. An intelligent harmonics current sharing (HCS) strategy is proposed in this work for distribution of reactive and harmonic demands of local loads based on operating modes. Multiple cascaded second-order generalized integrator-based frequency locked loop (CSOGI-FLL) is implemented to estimate dominant harmonic components of nonlinear load currents. Moreover, utility frequency estimated using CSOGI-FLL is utilized to regulate PCC parameters during synchronization of microgrid with utility while supporting HCS. System is simulated at various operating conditions in MATLAB/Simulink environment, and results are validated on a real-time OP5700-based test bench.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1414-1424"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10848208/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Oversizing voltage source converter (VSC) too much is a common consequence of conventional control methods used to maintain sinusoidal utility currents in a central battery energy storage (BES) and multiple solar photovoltaic (PV) arrays-based microgrids interfaced in parallel at the point of common coupling (PCC). It is done to meet harmonics demand of local loads, resulting in increased installation costs and reduced reliability of whole system. An intelligent harmonics current sharing (HCS) strategy is proposed in this work for distribution of reactive and harmonic demands of local loads based on operating modes. Multiple cascaded second-order generalized integrator-based frequency locked loop (CSOGI-FLL) is implemented to estimate dominant harmonic components of nonlinear load currents. Moreover, utility frequency estimated using CSOGI-FLL is utilized to regulate PCC parameters during synchronization of microgrid with utility while supporting HCS. System is simulated at various operating conditions in MATLAB/Simulink environment, and results are validated on a real-time OP5700-based test bench.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信