Near-Field Channel Estimation and Localization: Recent developments, cooperative integration, and future directions

IF 9.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Songjie Yang;Hua Chen;Wei Liu;Xiao-Ping Zhang;Chau Yuen
{"title":"Near-Field Channel Estimation and Localization: Recent developments, cooperative integration, and future directions","authors":"Songjie Yang;Hua Chen;Wei Liu;Xiao-Ping Zhang;Chau Yuen","doi":"10.1109/MSP.2024.3500791","DOIUrl":null,"url":null,"abstract":"Near-field (NF) signal processing introduces a new epoch in communication and sensing realms, showcasing transformative potential, particularly in extremely large-scale (XL) aperture array (ELAA) systems compared to its far-field (FF) counterpart. The NF spherical wavefront, incorporating the distance/range parameter through amplitude variations and phase differences among antennas, enhances spatial sensing capabilities. Localization, often intertwined with angle estimation, emerges as a direct beneficiary of this phenomenon, commanding substantial research attention. Moreover, the NF effects on spatial channels in ELAA communications mandate the formulation of diverse NF channel estimation (CE) methods. In this vein, our study presents a tutorial review of NF CE and localization, encapsulating fundamental wavefront models and extended advanced scenarios. Recognizing their pivotal roles in integrated sensing and communication (ISAC) systems, we examine their similarities and explore NF-integrated CE and localization (NF-ICEL) at the signal processing level. Additionally, we analyze system-level NF-ICEL under three specific scenarios, comparing them with FF-ICEL and highlighting the unique abilities and potential uses of NF-ICEL in scatterer/environment sensing, high-mobility situations, and unsynchronized systems.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 1","pages":"60-73"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934792/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Near-field (NF) signal processing introduces a new epoch in communication and sensing realms, showcasing transformative potential, particularly in extremely large-scale (XL) aperture array (ELAA) systems compared to its far-field (FF) counterpart. The NF spherical wavefront, incorporating the distance/range parameter through amplitude variations and phase differences among antennas, enhances spatial sensing capabilities. Localization, often intertwined with angle estimation, emerges as a direct beneficiary of this phenomenon, commanding substantial research attention. Moreover, the NF effects on spatial channels in ELAA communications mandate the formulation of diverse NF channel estimation (CE) methods. In this vein, our study presents a tutorial review of NF CE and localization, encapsulating fundamental wavefront models and extended advanced scenarios. Recognizing their pivotal roles in integrated sensing and communication (ISAC) systems, we examine their similarities and explore NF-integrated CE and localization (NF-ICEL) at the signal processing level. Additionally, we analyze system-level NF-ICEL under three specific scenarios, comparing them with FF-ICEL and highlighting the unique abilities and potential uses of NF-ICEL in scatterer/environment sensing, high-mobility situations, and unsynchronized systems.
近场信道估计与定位:近期发展、合作整合与未来方向
与远场(FF)相比,近场(NF)信号处理在通信和传感领域引入了一个新的时代,展示了变革潜力,特别是在超大规模(XL)孔径阵列(ELAA)系统中。通过天线之间的幅值变化和相位差,融合了距离/距离参数的球面波前增强了空间感知能力。定位往往与角度估计交织在一起,是这一现象的直接受益者,引起了大量的研究关注。此外,在ELAA通信中,NF对空间信道的影响要求制定不同的NF信道估计方法。在这方面,我们的研究提供了NF CE和定位的教程回顾,封装了基本波前模型和扩展的高级场景。认识到它们在集成传感和通信(ISAC)系统中的关键作用,我们研究了它们的相似性,并在信号处理层面探索了nf集成CE和定位(NF-ICEL)。此外,我们分析了三种特定场景下的系统级NF-ICEL,将它们与FF-ICEL进行了比较,并强调了NF-ICEL在散射体/环境传感、高移动性情况和非同步系统中的独特能力和潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Magazine
IEEE Signal Processing Magazine 工程技术-工程:电子与电气
CiteScore
27.20
自引率
0.70%
发文量
123
审稿时长
6-12 weeks
期刊介绍: EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信