Strong Orbital-Lattice Coupling Induces Glassy Thermal Conductivity in High-Symmetry Single Crystal BaTiS3

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yan Wang, Lin Xie, Haobo Yang, Mingyuan Hu, Xin Qian, Ronggui Yang, Jiaqing He
{"title":"Strong Orbital-Lattice Coupling Induces Glassy Thermal Conductivity in High-Symmetry Single Crystal BaTiS3","authors":"Yan Wang, Lin Xie, Haobo Yang, Mingyuan Hu, Xin Qian, Ronggui Yang, Jiaqing He","doi":"10.1103/physrevx.15.011066","DOIUrl":null,"url":null,"abstract":"In this work, we investigated glassy lattice thermal conductivity in high-symmetry BaTi</a:mi></a:mrow>S</a:mi></a:mrow>3</a:mn></a:mrow></a:msub></a:mrow></a:mrow></a:mrow></a:math> crystals, with a particular focus on the critical interplay between orbital electrons and lattice dynamics. Strong orbital-lattice coupling was found to induce spontaneous symmetry breaking through the Ti-S octahedral distortions, leading to the formation of a unique 1D order–2D disorder lattice structure. With neuroevolution potentials, molecular dynamics simulation of this structure successfully reproduced the glasslike in-plane lattice thermal conductivity observed in experiments. The predicted out-of-plane thermal conductivity decreases with temperature, exhibiting a crystalline trend that is consistent with our measurements. Our findings provide fundamental insights into the mechanism of anomalous amorphous thermal conductivity in single crystals, which arises from the coexistence of overall high symmetry and local structural disorder in specific regions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"23 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011066","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigated glassy lattice thermal conductivity in high-symmetry BaTiS3 crystals, with a particular focus on the critical interplay between orbital electrons and lattice dynamics. Strong orbital-lattice coupling was found to induce spontaneous symmetry breaking through the Ti-S octahedral distortions, leading to the formation of a unique 1D order–2D disorder lattice structure. With neuroevolution potentials, molecular dynamics simulation of this structure successfully reproduced the glasslike in-plane lattice thermal conductivity observed in experiments. The predicted out-of-plane thermal conductivity decreases with temperature, exhibiting a crystalline trend that is consistent with our measurements. Our findings provide fundamental insights into the mechanism of anomalous amorphous thermal conductivity in single crystals, which arises from the coexistence of overall high symmetry and local structural disorder in specific regions. Published by the American Physical Society 2025
在这项工作中,我们研究了高对称性 BaTiS3 晶体中的玻璃晶格热导率,尤其关注轨道电子与晶格动力学之间的关键相互作用。研究发现,强轨道-晶格耦合可通过 Ti-S 八面体畸变诱发自发对称性破坏,从而形成独特的一维有序-二维无序晶格结构。利用神经进化势,对这种结构进行分子动力学模拟,成功地再现了实验中观察到的玻璃状面内晶格热导率。预测的面外热导率随温度升高而降低,呈现出与我们的测量结果一致的结晶趋势。我们的发现从根本上揭示了单晶体中非晶态热导率的机理,这种非晶态热导率源于整体高度对称性和特定区域局部结构无序性的共存。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信