Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yusuke Matsuya, Yuji Yoshii, Tamon Kusumoto, Tatsuhiko Ogawa, Seiki Ohnishi, Yuho Hirata, Tatsuhiko Sato and Takeshi Kai
{"title":"Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations†","authors":"Yusuke Matsuya, Yuji Yoshii, Tamon Kusumoto, Tatsuhiko Ogawa, Seiki Ohnishi, Yuho Hirata, Tatsuhiko Sato and Takeshi Kai","doi":"10.1039/D4CP04216F","DOIUrl":null,"url":null,"abstract":"<p >Water radiolysis plays an important role in elucidating radiation-induced biological effects such as early DNA damage induction, chromosome aberrations, and carcinogenesis. Several Monte Carlo simulation codes for water radiolysis, commonly referred to as chemical simulation codes, have been developed worldwide. However, these codes typically require substantial computational time to calculate the time-dependent <em>G</em> values of water radiolysis species (<em>e.g.</em>, ˙OH, e<small><sup>−</sup></small><small><sub>aq</sub></small>, H<small><sub>2</sub></small>, and H<small><sub>2</sub></small>O<small><sub>2</sub></small>), and their application is often limited to specific ion beam types. In the Particle and Heavy Ion Transport code System (PHITS), the track-structure mode that allows the simulation of each atomic interaction in liquid water for any charged particles and the subsequent chemical code (named PHITS-Chem code) dedicated to electrons was developed previously. In this study, we developed the PHITS-Chem code to support a broader range of ion beam species. To reduce computational time, we introduced new features including a space partitioning method to increase the detection efficiency of reactions between chemical species and a radical scavenger model that reduces the lifetime of OH radicals. We benchmarked the updated PHITS-Chem code by comparing its predicted time-dependent <em>G</em> values for protons, α particles, and carbon ions with those reported in the literature (<em>i.e.</em>, other simulation and measured data). The inclusion of a space partitioning method and the modified OH radical scavenger model reduced the time required by the PHITS-Chem code to calculate <em>G</em> values (by approximately 28-fold during radiolysis simulations under 1-MeV electron exposure) while maintaining calculation accuracy. A key advantage of the PHITS-Chem code is the four-dimensional visualization capability, integrated with PHITS′ native visualization software, PHIG-3D. Considering the ability of the PHITS-Chem code to handle OH radical scavengers (<em>i.e.</em>, tris(hydroxymethyl)aminomethane and dimethyl sulfoxide), it is anticipated to offer precise and intuitive insights into the radiation-induced biological effects of chemical species in ion-beam radiotherapy.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 14","pages":" 6887-6898"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04216f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water radiolysis plays an important role in elucidating radiation-induced biological effects such as early DNA damage induction, chromosome aberrations, and carcinogenesis. Several Monte Carlo simulation codes for water radiolysis, commonly referred to as chemical simulation codes, have been developed worldwide. However, these codes typically require substantial computational time to calculate the time-dependent G values of water radiolysis species (e.g., ˙OH, eaq, H2, and H2O2), and their application is often limited to specific ion beam types. In the Particle and Heavy Ion Transport code System (PHITS), the track-structure mode that allows the simulation of each atomic interaction in liquid water for any charged particles and the subsequent chemical code (named PHITS-Chem code) dedicated to electrons was developed previously. In this study, we developed the PHITS-Chem code to support a broader range of ion beam species. To reduce computational time, we introduced new features including a space partitioning method to increase the detection efficiency of reactions between chemical species and a radical scavenger model that reduces the lifetime of OH radicals. We benchmarked the updated PHITS-Chem code by comparing its predicted time-dependent G values for protons, α particles, and carbon ions with those reported in the literature (i.e., other simulation and measured data). The inclusion of a space partitioning method and the modified OH radical scavenger model reduced the time required by the PHITS-Chem code to calculate G values (by approximately 28-fold during radiolysis simulations under 1-MeV electron exposure) while maintaining calculation accuracy. A key advantage of the PHITS-Chem code is the four-dimensional visualization capability, integrated with PHITS′ native visualization software, PHIG-3D. Considering the ability of the PHITS-Chem code to handle OH radical scavengers (i.e., tris(hydroxymethyl)aminomethane and dimethyl sulfoxide), it is anticipated to offer precise and intuitive insights into the radiation-induced biological effects of chemical species in ion-beam radiotherapy.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信