Non-Metal Doped VTe2 Monolayer: Theoretical Insights into the Enhanced Mechanism for Hydrogen Evolution Reaction

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yanwei Wang, Guofeng Li, Jisong Hu, Ge Gao, Ying Zhang, Guangxia Shi, Xu Yang, Lei Zhang, Ling Fang, Yinwei Li
{"title":"Non-Metal Doped VTe2 Monolayer: Theoretical Insights into the Enhanced Mechanism for Hydrogen Evolution Reaction","authors":"Yanwei Wang, Guofeng Li, Jisong Hu, Ge Gao, Ying Zhang, Guangxia Shi, Xu Yang, Lei Zhang, Ling Fang, Yinwei Li","doi":"10.1039/d5cp00670h","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal dichalcogenides (TMDCs), such as vanadium ditelluride (VTe2), have emerged as promising catalysts for the hydrogen evolution reaction (HER) due to their unique layered structures and remarkable electronic properties. However, the catalytic performance of pristine VTe2 remains inferior to that of noble metals. In this study, density functional theory (DFT) calculations were employed to systematically investigate the influence of fourteen different non-metal dopants on the HER activity of VTe2. Our results disclose that N-VTe2, P-VTe2 and As-VTe2 possess exceptional catalytic properties for the HER with the Gibbs free energy of hydrogen adsorption (GH*) values of 0.031, −0.032 and 0.024 eV, respectively. Furthermore, analyses of the geometric and electronic structures reveal that non-metal doping induces localized geometric distortions and charge redistribution, thereby altering the electronic environment of active sites and enhancing catalytic performance. More importantly, a composite descriptor , integrating the bond length between doped non-metal atoms and neighboring V atoms (LNM-M) and the pz band center (pz) of the doped atoms, demonstrates a strong correlation with GH* and may serve as an effective predictor of HER activity. These findings shed light on non-metal doping as an effective strategy for developing efficient, non-noble metal HER catalysts based on TMDCs.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"198 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00670h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs), such as vanadium ditelluride (VTe2), have emerged as promising catalysts for the hydrogen evolution reaction (HER) due to their unique layered structures and remarkable electronic properties. However, the catalytic performance of pristine VTe2 remains inferior to that of noble metals. In this study, density functional theory (DFT) calculations were employed to systematically investigate the influence of fourteen different non-metal dopants on the HER activity of VTe2. Our results disclose that N-VTe2, P-VTe2 and As-VTe2 possess exceptional catalytic properties for the HER with the Gibbs free energy of hydrogen adsorption (GH*) values of 0.031, −0.032 and 0.024 eV, respectively. Furthermore, analyses of the geometric and electronic structures reveal that non-metal doping induces localized geometric distortions and charge redistribution, thereby altering the electronic environment of active sites and enhancing catalytic performance. More importantly, a composite descriptor , integrating the bond length between doped non-metal atoms and neighboring V atoms (LNM-M) and the pz band center (pz) of the doped atoms, demonstrates a strong correlation with GH* and may serve as an effective predictor of HER activity. These findings shed light on non-metal doping as an effective strategy for developing efficient, non-noble metal HER catalysts based on TMDCs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信