Mixed messages: Unmixing sedimentary molecular distributions reveals source contributions and isotopic values

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Pratigya J. Polissar, A.Tyler Karp, William J. D’Andrea
{"title":"Mixed messages: Unmixing sedimentary molecular distributions reveals source contributions and isotopic values","authors":"Pratigya J. Polissar, A.Tyler Karp, William J. D’Andrea","doi":"10.1016/j.gca.2025.03.001","DOIUrl":null,"url":null,"abstract":"Plant leaf waxes and their isotopic composition are important tracers of ecological, environmental, and climate variability, with strong preservation potential in sedimentary archives. However, they represent an integrated, and often complicated, signal of vegetation and hydrology within a watershed. Here, we report a new approach for examining complex mixtures of <ce:italic>n</ce:italic>-alkanes in sediments and their isotope values: non-negative matrix factorization (NMF). NMF identifies the endmembers in a mixture from the integrated <ce:italic>n</ce:italic>-alkane data and provides quantitative information on the relative importance of those endmembers across samples. We apply this approach to a synthetic dataset and two previously published datasets to illustrate its uses. Our application of NMF to re-analyse previously published data reveals new insights into past climate and ecological change. We demonstrate that NMF allows a user to 1) identify potential mixing problems, 2) evaluate which specific compounds in a mixture carry the isotope signal that can best address a given scientific objective, 3) determine compound concentrations after excluding contributions from particular endmember sources, and 4) calculate isotope values of different sources. NMF provides a quantitative approach for evaluating the influence of endmember mixing on molecular concentrations and isotope values within a dataset. The re-analysis of two published datasets reveals new quantitative insight into Holocene Arctic climate and Neogene vegetation change.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"70 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.03.001","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Plant leaf waxes and their isotopic composition are important tracers of ecological, environmental, and climate variability, with strong preservation potential in sedimentary archives. However, they represent an integrated, and often complicated, signal of vegetation and hydrology within a watershed. Here, we report a new approach for examining complex mixtures of n-alkanes in sediments and their isotope values: non-negative matrix factorization (NMF). NMF identifies the endmembers in a mixture from the integrated n-alkane data and provides quantitative information on the relative importance of those endmembers across samples. We apply this approach to a synthetic dataset and two previously published datasets to illustrate its uses. Our application of NMF to re-analyse previously published data reveals new insights into past climate and ecological change. We demonstrate that NMF allows a user to 1) identify potential mixing problems, 2) evaluate which specific compounds in a mixture carry the isotope signal that can best address a given scientific objective, 3) determine compound concentrations after excluding contributions from particular endmember sources, and 4) calculate isotope values of different sources. NMF provides a quantitative approach for evaluating the influence of endmember mixing on molecular concentrations and isotope values within a dataset. The re-analysis of two published datasets reveals new quantitative insight into Holocene Arctic climate and Neogene vegetation change.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信