Mineral-melt calcium isotope fractionation factors constrained using ab initio molecular dynamics simulations and their implications to calcium isotope effects during partial melting in the upper mantle

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yonghui Li , Justin Hardin , Wenzhong Wang , Zhongqing Wu , Shichun Huang
{"title":"Mineral-melt calcium isotope fractionation factors constrained using ab initio molecular dynamics simulations and their implications to calcium isotope effects during partial melting in the upper mantle","authors":"Yonghui Li ,&nbsp;Justin Hardin ,&nbsp;Wenzhong Wang ,&nbsp;Zhongqing Wu ,&nbsp;Shichun Huang","doi":"10.1016/j.gca.2025.02.032","DOIUrl":null,"url":null,"abstract":"<div><div>To better constrain the Ca isotope effect during partial melting of Earth’s mantle, we used <em>ab initio</em> molecular dynamic simulations to calculate the equilibrium mineral-silicate melt Ca isotope fractionation factors for the major Ca-bearing minerals of the upper mantle (orthopyroxene, clinopyroxene, olivine, and garnet), as well as plagioclase. We found that mineral-melt Ca isotope fractionation factors are dependent on pressure, temperature, and mineral major element compositions, but not the silicate melt composition. Specifically, our calculations show that under equilibrium, clinopyroxene has a slightly heavier Ca isotope composition compared to silicate melt, consistent with the inference of published research that studied the Ca isotope effects during basaltic magma evolution.</div><div>We then utilized the calculated mineral-melt Ca isotope fractionation factors to model the Ca isotope effects on both silicate melts and residues during partial melting of spinel peridotite at 1–2 GPa, garnet peridotite at 3–7 GPa, and garnet pyroxenite/eclogite at 2–5 GPa. Our model predicts that silicate melts only have <em>δ</em><sup>44/40</sup>Ca up to 0.12 lower than their source value, consistent with previous estimates. Importantly, partial melts of spinel peridotite, garnet peridotite, and garnet pyroxenite/eclogite exhibit overlapping <em>δ</em><sup>44/40</sup>Ca values, if their mantle sources have the same <em>δ</em><sup>44/40</sup>Ca. Partial melting alone cannot explain the full range of <em>δ</em><sup>44/40</sup>Ca values observed in natural basalts, and at least part of this variation must reflect <em>δ</em><sup>44/40</sup>Ca variation of their mantle sources and/or other processes such as crystal fractionation.</div><div>Our calculations show that melting residues always have <em>δ</em><sup>44/40</sup>Ca higher than their mantle source, with the highest <em>δ</em><sup>44/40</sup>Ca at 0.40 higher than their source value. This range is much smaller than that observed in natural ultramafic rocks that might represent melting residues. In addition, the range and direction of inter-mineral Ca isotope fractionation factors predicted in our modeled residues for the mineral pairs orthopyroxene-clinopyroxene and garnet-clinopyroxene are much more restricted than those observed in natural ultramafic rocks, including peridotites and pyroxenites/eclogites. Therefore, most natural ultramafic rocks have likely experienced more complicated petrogeneses than partial melting.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"396 ","pages":"Pages 51-70"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001103","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

To better constrain the Ca isotope effect during partial melting of Earth’s mantle, we used ab initio molecular dynamic simulations to calculate the equilibrium mineral-silicate melt Ca isotope fractionation factors for the major Ca-bearing minerals of the upper mantle (orthopyroxene, clinopyroxene, olivine, and garnet), as well as plagioclase. We found that mineral-melt Ca isotope fractionation factors are dependent on pressure, temperature, and mineral major element compositions, but not the silicate melt composition. Specifically, our calculations show that under equilibrium, clinopyroxene has a slightly heavier Ca isotope composition compared to silicate melt, consistent with the inference of published research that studied the Ca isotope effects during basaltic magma evolution.
We then utilized the calculated mineral-melt Ca isotope fractionation factors to model the Ca isotope effects on both silicate melts and residues during partial melting of spinel peridotite at 1–2 GPa, garnet peridotite at 3–7 GPa, and garnet pyroxenite/eclogite at 2–5 GPa. Our model predicts that silicate melts only have δ44/40Ca up to 0.12 lower than their source value, consistent with previous estimates. Importantly, partial melts of spinel peridotite, garnet peridotite, and garnet pyroxenite/eclogite exhibit overlapping δ44/40Ca values, if their mantle sources have the same δ44/40Ca. Partial melting alone cannot explain the full range of δ44/40Ca values observed in natural basalts, and at least part of this variation must reflect δ44/40Ca variation of their mantle sources and/or other processes such as crystal fractionation.
Our calculations show that melting residues always have δ44/40Ca higher than their mantle source, with the highest δ44/40Ca at 0.40 higher than their source value. This range is much smaller than that observed in natural ultramafic rocks that might represent melting residues. In addition, the range and direction of inter-mineral Ca isotope fractionation factors predicted in our modeled residues for the mineral pairs orthopyroxene-clinopyroxene and garnet-clinopyroxene are much more restricted than those observed in natural ultramafic rocks, including peridotites and pyroxenites/eclogites. Therefore, most natural ultramafic rocks have likely experienced more complicated petrogeneses than partial melting.
基于从头算分子动力学模拟的矿物熔体钙同位素分馏因子及其对上地幔部分熔融钙同位素效应的影响
为了更好地确定地球地幔部分熔融过程中的钙同位素效应,我们利用自证分子动力学模拟计算了上地幔主要含钙矿物(正长石、倩辉石、橄榄石和石榴石)以及斜长石的平衡矿物-硅酸盐熔体钙同位素分馏系数。我们发现,矿物-熔体钙同位素分馏系数取决于压力、温度和矿物主要元素组成,但与硅酸盐熔体组成无关。具体来说,我们的计算表明,在平衡状态下,霞石的钙同位素组成比硅酸盐熔体稍重,这与已发表的研究玄武质岩浆演化过程中钙同位素效应的推论一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信