The assembly of the most rotationally supported disc galaxies in the TNG100 simulations

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Silvio Rodríguez, Valeria A. Cristiani, Laura V. Sales, Mario G. Abadi
{"title":"The assembly of the most rotationally supported disc galaxies in the TNG100 simulations","authors":"Silvio Rodríguez, Valeria A. Cristiani, Laura V. Sales, Mario G. Abadi","doi":"10.1051/0004-6361/202452209","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Disc-dominated galaxies can be difficult to accommodate in a hierarchical formation scenario such as Λ cold dark matter (ΛCDM), where mergers are an important growth mechanism. However, observational evidence indicates that these galaxies are common in the Universe.<i>Aims.<i/> We seek to characterise the conditions that lead to the formation of disc-dominated galaxies within ΛCDM.<i>Methods.<i/> We used dynamical decomposition of the stellar particles in all galaxies with stellar mass <i>M<i/><sub>∗<sub/> = [10<sup>10<sup/> − 10<sup>11<sup/>] M<sub>⊙<sub/> within the cosmological hydrodynamical simulation Illustris TNG100. We selected a sample of 43 mostly-disc galaxies that have less than ∼10% of their mass in a bulge component. For comparison, we also studied two additional stellar-mass matched samples: 43 intermediate galaxies having ∼30% of their stellar mass in the bulge and 43 with a purely spheroidal-like morphology.<i>Results.<i/> We find that the selection purely based on stellar dynamics is able to reproduce the expected stellar population trends of different morphological types, with higher star-formation rates and younger stars in disc-dominated galaxies. Halo spin seems to play no role in the morphology of the galaxies, in agreement with previous works. At a fixed <i>M<i/><sub>*<sub/>, our mostly-disc and intermediate samples form in dark matter haloes that are two to ten times less massive than the spheroidal sample, highlighting a higher efficiency in disc galaxies to retain and condensate their baryons. On average, mergers are less prevalent in the buildup of discs than in spheroidal galaxies, but there is a large scatter, including the existence of mostly-disc galaxies, with 15%–30% of their stars coming from accreted origin. Discs start to form early on, settling their low vertical velocity dispersion as early as 9–10 Gyr ago, although the dominance of the disc over the spheroid was established more recently (3–4 Gyr lookback time). The most rotationally supported discs form in haloes with the lowest virial mass in the sample and the best aligned distribution of angular momentum in the gas.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"27 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452209","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Disc-dominated galaxies can be difficult to accommodate in a hierarchical formation scenario such as Λ cold dark matter (ΛCDM), where mergers are an important growth mechanism. However, observational evidence indicates that these galaxies are common in the Universe.Aims. We seek to characterise the conditions that lead to the formation of disc-dominated galaxies within ΛCDM.Methods. We used dynamical decomposition of the stellar particles in all galaxies with stellar mass M = [1010 − 1011] M within the cosmological hydrodynamical simulation Illustris TNG100. We selected a sample of 43 mostly-disc galaxies that have less than ∼10% of their mass in a bulge component. For comparison, we also studied two additional stellar-mass matched samples: 43 intermediate galaxies having ∼30% of their stellar mass in the bulge and 43 with a purely spheroidal-like morphology.Results. We find that the selection purely based on stellar dynamics is able to reproduce the expected stellar population trends of different morphological types, with higher star-formation rates and younger stars in disc-dominated galaxies. Halo spin seems to play no role in the morphology of the galaxies, in agreement with previous works. At a fixed M*, our mostly-disc and intermediate samples form in dark matter haloes that are two to ten times less massive than the spheroidal sample, highlighting a higher efficiency in disc galaxies to retain and condensate their baryons. On average, mergers are less prevalent in the buildup of discs than in spheroidal galaxies, but there is a large scatter, including the existence of mostly-disc galaxies, with 15%–30% of their stars coming from accreted origin. Discs start to form early on, settling their low vertical velocity dispersion as early as 9–10 Gyr ago, although the dominance of the disc over the spheroid was established more recently (3–4 Gyr lookback time). The most rotationally supported discs form in haloes with the lowest virial mass in the sample and the best aligned distribution of angular momentum in the gas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信