Rayyan Tariq Khan, Pavel Kohout, Milos Musil, Monika Rosinska, Jiri Damborsky, Stanislav Mazurenko, David Bednar
{"title":"Anticipating protein evolution with successor sequence predictor","authors":"Rayyan Tariq Khan, Pavel Kohout, Milos Musil, Monika Rosinska, Jiri Damborsky, Stanislav Mazurenko, David Bednar","doi":"10.1186/s13321-025-00971-z","DOIUrl":null,"url":null,"abstract":"<p>The quest to predict and understand protein evolution has been hindered by limitations on both the theoretical and the experimental fronts. Most existing theoretical models of evolution are descriptive, rather than predictive, leaving the final modifications in the hands of researchers. Existing experimental techniques to help probe the evolutionary sequence space of proteins, such as directed evolution, are resource-intensive and require specialised skills. We present the successor sequence predictor (SSP) as an innovative solution. Successor sequence predictor is an in silico protein design method that mimics laboratory-based protein evolution by reconstructing a protein's evolutionary history and suggesting future amino acid substitutions based on trends observed in that history through carefully selected physicochemical descriptors. This approach enhances specialised proteins by predicting mutations that improve desired properties, such as thermostability, activity, and solubility. Successor Sequence Predictor can thus be used as a general protein engineering tool to develop practically useful proteins. The code of the Successor Sequence Predictor is provided at https://github.com/loschmidt/successor-sequence-predictor, and the design of mutations will be also possible via an easy-to-use web server https://loschmidt.chemi.muni.cz/fireprotasr/.</p><p> The Successor Sequence Predictor advances protein evolution prediction at the amino acid level by integrating ancestral sequence reconstruction with a novel in silico approach that models evolutionary trends through selected physicochemical descriptors. Unlike prior work, SSP can forecast future amino acid substitutions that enhance protein properties such as thermostability, activity, and solubility. This method reduces reliance on resource-intensive directed evolution techniques while providing a generalizable, predictive tool for protein engineering.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00971-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00971-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quest to predict and understand protein evolution has been hindered by limitations on both the theoretical and the experimental fronts. Most existing theoretical models of evolution are descriptive, rather than predictive, leaving the final modifications in the hands of researchers. Existing experimental techniques to help probe the evolutionary sequence space of proteins, such as directed evolution, are resource-intensive and require specialised skills. We present the successor sequence predictor (SSP) as an innovative solution. Successor sequence predictor is an in silico protein design method that mimics laboratory-based protein evolution by reconstructing a protein's evolutionary history and suggesting future amino acid substitutions based on trends observed in that history through carefully selected physicochemical descriptors. This approach enhances specialised proteins by predicting mutations that improve desired properties, such as thermostability, activity, and solubility. Successor Sequence Predictor can thus be used as a general protein engineering tool to develop practically useful proteins. The code of the Successor Sequence Predictor is provided at https://github.com/loschmidt/successor-sequence-predictor, and the design of mutations will be also possible via an easy-to-use web server https://loschmidt.chemi.muni.cz/fireprotasr/.
The Successor Sequence Predictor advances protein evolution prediction at the amino acid level by integrating ancestral sequence reconstruction with a novel in silico approach that models evolutionary trends through selected physicochemical descriptors. Unlike prior work, SSP can forecast future amino acid substitutions that enhance protein properties such as thermostability, activity, and solubility. This method reduces reliance on resource-intensive directed evolution techniques while providing a generalizable, predictive tool for protein engineering.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.